Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Related tags

Deep Learningibc
Overview

Implicit Behavioral Cloning

This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper:

Implicit Behavioral Cloning (website link) (arXiv link)
Pete Florence, Corey Lynch, Andy Zeng, Oscar Ramirez, Ayzaan Wahid, Laura Downs, Adrian Wong, Johnny Lee, Igor Mordatch, Jonathan Tompson
Conference on Robot Learning (CoRL) 2021

Abstract

We find that across a wide range of robot policy learning scenarios, treating supervised policy learning with an implicit model generally performs better, on average, than commonly used explicit models. We present extensive experiments on this finding, and we provide both intuitive insight and theoretical arguments distinguishing the properties of implicit models compared to their explicit counterparts, particularly with respect to approximating complex, potentially discontinuous and multi-valued (set-valued) functions. On robotic policy learning tasks we show that implicit behavioral cloning policies with energy-based models (EBM) often outperform common explicit (Mean Square Error, or Mixture Density) behavioral cloning policies, including on tasks with high-dimensional action spaces and visual image inputs. We find these policies provide competitive results or outperform state-of-the-art offline reinforcement learning methods on the challenging human-expert tasks from the D4RL benchmark suite, despite using no reward information. In the real world, robots with implicit policies can learn complex and remarkably subtle behaviors on contact-rich tasks from human demonstrations, including tasks with high combinatorial complexity and tasks requiring 1mm precision.

Prerequisites

The code for this project uses python 3.7+ and the following pip packages:

python3 -m pip install --upgrade pip
pip install \
  absl-py==0.12.0 \
  gin-config==0.4.0 \
  matplotlib==3.4.3 \
  mediapy==1.0.3 \
  opencv-python==4.5.3.56 \
  pybullet==3.1.6 \
  scipy==1.7.1 \
  tensorflow==2.6.0 \
  tensorflow-probability==0.13.0 \
  tf-agents-nightly==0.10.0.dev20210930 \
  tqdm==4.62.2

(Optional): For Mujoco support, see docs/mujoco_setup.md. Recommended to skip it unless you specifically want to run the Adroit and Kitchen environments.

Quickstart: from 0 to a trained IBC policy in 10 minutes.

Step 1: Install listed Python packages above in Prerequisites.

Step 2: Run unit tests (should take less than a minute), and do this from the directory just above the top-level ibc directory:

./ibc/run_tests.sh

Step 3: Check that Tensorflow has GPU access:

python3 -c "import tensorflow as tf; print(tf.test.is_gpu_available())"

If the above prints False, see the following requirements, notably CUDA 11.2 and cuDNN 8.1.0: https://www.tensorflow.org/install/gpu#software_requirements.

Step 4: Let's do an example Block Pushing task, so first let's download oracle data (or see Tasks for how to generate it):

cd ibc/data
wget https://storage.googleapis.com/brain-reach-public/ibc_data/block_push_states_location.zip
unzip block_push_states_location.zip && rm block_push_states_location.zip
cd ../..

Step 5: Set PYTHONPATH to include the directory just above top-level ibc, so if you've been following the commands above it is:

export PYTHONPATH=$PYTHONPATH:${PWD}

Step 6: On that example Block Pushing task, we'll next do a training + evaluation with Implicit BC:

./ibc/ibc/configs/pushing_states/run_mlp_ebm.sh

Some notes:

  • On an example single-GPU machine (GTX 2080 Ti), the above trains at about 18 steps/sec, and should get to high success rates in 5,000 or 10,000 steps (roughly 5-10 minutes of training).
  • The mlp_ebm.gin is just one config, with is meant to be reasonably fast to train, with only 20 evals at each interval, and is not suitable for all tasks. See Tasks for more configs.
  • Due to the --video flag above, you can watch a video of the learned policy in action at: /tmp/ibc_logs/mlp_ebm/ibc_dfo/... navigate to the videos/ttl=7d subfolder, and by default there should be one example .mp4 video saved every time you do an evaluation interval.

(Optional) Step 7: For the pybullet-based tasks, we also have real-time interactive visualization set up through a visualization server, so in one terminal:

cd <path_to>/ibc/..
export PYTHONPATH=$PYTHONPATH:${PWD}
python3 -m pybullet_utils.runServer

And in a different terminal run the oracle a few times with the --shared_memory flag:

cd <path_to>/ibc/..
export PYTHONPATH=$PYTHONPATH:${PWD}
python3 ibc/data/policy_eval.py -- \
  --alsologtostderr \
  --shared_memory \
  --num_episodes=3 \
  --policy=oracle_push \
  --task=PUSH

You're done with Quickstart! See below for more Tasks, and also see docs/codebase_overview.md and docs/workflow.md for additional info.

Tasks

Task: Particle

In this task, the goal is for the agent (black dot) to first go to the green dot, then the blue dot.

Example IBC policy Example MSE policy

Get Data

We can either generate data from scratch, for example for 2D (takes 15 seconds):

./ibc/ibc/configs/particle/collect_data.sh

Or just download all the data for all different dimensions:

cd ibc/data/
wget https://storage.googleapis.com/brain-reach-public/ibc_data/particle.zip
unzip particle.zip && rm particle.zip
cd ../..

Train and Evaluate

Let's start with some small networks, on just the 2D version since it's easiest to visualize, and compare MSE and IBC. Here's a small-network (256x2) IBC-with-Langevin config, where 2 is the argument for the environment dimensionality.

./ibc/ibc/configs/particle/run_mlp_ebm_langevin.sh 2

And here's an idenitcally sized network (256x2) but with MSE config:

./ibc/ibc/configs/particle/run_mlp_mse.sh 2

For the above configurations, we suggest comparing the rollout videos, which you can find at /tmp/ibc_logs/...corresponding_directory../videos/. At the top of this section is shown a comparison at 10,000 training steps for the two different above configs.

And here are the best configs respectfully for IBC (with langevin) and MSE, in this case run on the 16-dimensional environment:

./ibc/ibc/configs/particle/run_mlp_ebm_langevin_best.sh 16
./ibc/ibc/configs/particle/run_mlp_mse_best.sh 16

Note: the _best config is kind of slow for Langevin to train, but even just ./ibc/ibc/configs/particle/run_mlp_ebm_langevin.sh 16 (smaller network) seems to solve the 16-D environment pretty well, and is much faster to train.

Task: Block Pushing (from state observations)

Get Data

We can either generate data from scratch (~2 minutes for 2,000 episodes: 200 each across 10 replicas):

./ibc/ibc/configs/pushing_states/collect_data.sh

Or we can download data from the web:

cd ibc/data/
wget https://storage.googleapis.com/brain-reach-public/ibc_data/block_push_states_location.zip
unzip 'block_push_states_location.zip' && rm block_push_states_location.zip
cd ../..

Train and Evaluate

Here's reasonably fast-to-train config for IBC with DFO:

./ibc/ibc/configs/pushing_states/run_mlp_ebm.sh

Or here's a config for IBC with Langevin:

./ibc/ibc/configs/pushing_states/run_mlp_ebm_langevin.sh

Or here's a comparable, reasonably fast-to-train config for MSE:

./ibc/ibc/configs/pushing_states/run_mlp_mse.sh

Or to run the best configs respectfully for IBC, MSE, and MDN (some of these might be slower to train than the above):

./ibc/ibc/configs/pushing_states/run_mlp_ebm_best.sh
./ibc/ibc/configs/pushing_states/run_mlp_mse_best.sh
./ibc/ibc/configs/pushing_states/run_mlp_mdn_best.sh

Task: Block Pushing (from image observations)

Get Data

Download data from the web:

cd ibc/data/
wget https://storage.googleapis.com/brain-reach-public/ibc_data/block_push_visual_location.zip
unzip 'block_push_visual_location.zip' && rm block_push_visual_location.zip
cd ../..

Train and Evaluate

Here is an IBC with Langevin configuration which should actually converge faster than the IBC-with-DFO that we reported in the paper:

./ibc/ibc/configs/pushing_pixels/run_pixel_ebm_langevin.sh

And here are the best configs respectfully for IBC (with DFO), MSE, and MDN:

./ibc/ibc/configs/pushing_pixels/run_pixel_ebm_best.sh
./ibc/ibc/configs/pushing_pixels/run_pixel_mse_best.sh
./ibc/ibc/configs/pushing_pixels/run_pixel_mdn_best.sh

Task: D4RL Adroit and Kitchen

Get Data

The D4RL human demonstration training data used for the paper submission can be downloaded using the commands below. This data has been processed into a .tfrecord format from the original D4RL data format:

cd ibc/data && mkdir -p d4rl_trajectories && cd d4rl_trajectories
wget https://storage.googleapis.com/brain-reach-public/ibc_data/door-human-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/hammer-human-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/kitchen-complete-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/kitchen-mixed-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/kitchen-partial-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/pen-human-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/relocate-human-v0.zip
unzip '*.zip' && rm *.zip
cd ../../..

Run Train Eval:

Here are the best configs respectfully for IBC (with Langevin), and MSE: On a 2080 Ti GPU test, this IBC config trains at only 1.7 steps/sec, but it is about 10x faster on TPUv3.

./ibc/ibc/configs/d4rl/run_mlp_ebm_langevin_best.sh pen-human-v0
./ibc/ibc/configs/d4rl/run_mlp_mse_best.sh pen-human-v0

The above commands will run on the pen-human-v0 environment, but you can swap this arg for whichever of the provided Adroit/Kitchen environments.

Here also is an MDN config you can try. The network size is tiny but if you increase it heavily then it seems to get NaNs during training. In general MDNs can be finicky. A solution should be possible though.

./ibc/ibc/configs/d4rl/run_mlp_mdn.sh pen-human-v0

Summary for Reproducing Results

For the tasks that we've been able to open-source, results from the paper should be reproducible by using the linked data and command-line args below.

Task Figure/Table in paper Data Train + Eval commands
Coordinate regression Figure 4 See colab See colab
D4RL Adroit + Kitchen Table 2 Link Link
N-D particle Figure 6 Link Link
Simulated pushing, single target, states Table 3 Link Link
Simulated pushing, single target, pixels Table 3 Link Link

Citation

If you found our paper/code useful in your research, please consider citing:

@article{florence2021implicit,
    title={Implicit Behavioral Cloning},
    author={Florence, Pete and Lynch, Corey and Zeng, Andy and Ramirez, Oscar and Wahid, Ayzaan and Downs, Laura and Wong, Adrian and Lee, Johnny and Mordatch, Igor and Tompson, Jonathan},
    journal={Conference on Robot Learning (CoRL)},
    month = {November},
    year={2021}
}
Owner
Google Research
Google Research
Wenzhou-Kean University AI-LAB

AI-LAB This is Wenzhou-Kean University AI-LAB. Our research interests are in Computer Vision and Natural Language Processing. Computer Vision Please g

WKU AI-LAB 10 May 05, 2022
Repository for self-supervised landmark discovery

self-supervised-landmarks Repository for self-supervised landmark discovery Requirements pytorch pynrrd (for 3d images) Usage The use of this models i

Riddhish Bhalodia 2 Apr 18, 2022
[CVPR 2021 Oral] Variational Relational Point Completion Network

VRCNet: Variational Relational Point Completion Network This repository contains the PyTorch implementation of the paper: Variational Relational Point

PL 121 Dec 12, 2022
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
Proof-Of-Concept Piano-Drums Music AI Model/Implementation

Rock Piano "When all is one and one is all, that's what it is to be a rock and not to roll." ---Led Zeppelin, "Stairway To Heaven" Proof-Of-Concept Pi

Alex 4 Nov 28, 2021
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
Nvidia Semantic Segmentation monorepo

Paper | YouTube | Cityscapes Score Pytorch implementation of our paper Hierarchical Multi-Scale Attention for Semantic Segmentation. Please refer to t

NVIDIA Corporation 1.6k Jan 04, 2023
Colab notebook and additional materials for Python-driven analysis of redlining data in Philadelphia

RedliningExploration The Google Colaboratory file contained in this repository contains work inspired by a project on educational inequality in the Ph

Benjamin Warren 1 Jan 20, 2022
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging This repository contains an implementation

Computational Photography Lab @ SFU 1.1k Jan 02, 2023
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 01, 2023
A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

Manas Sharma 19 Feb 28, 2022
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
Generalized Random Forests

generalized random forests A pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods fo

GRF Labs 781 Dec 25, 2022