Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Related tags

Deep Learningibc
Overview

Implicit Behavioral Cloning

This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper:

Implicit Behavioral Cloning (website link) (arXiv link)
Pete Florence, Corey Lynch, Andy Zeng, Oscar Ramirez, Ayzaan Wahid, Laura Downs, Adrian Wong, Johnny Lee, Igor Mordatch, Jonathan Tompson
Conference on Robot Learning (CoRL) 2021

Abstract

We find that across a wide range of robot policy learning scenarios, treating supervised policy learning with an implicit model generally performs better, on average, than commonly used explicit models. We present extensive experiments on this finding, and we provide both intuitive insight and theoretical arguments distinguishing the properties of implicit models compared to their explicit counterparts, particularly with respect to approximating complex, potentially discontinuous and multi-valued (set-valued) functions. On robotic policy learning tasks we show that implicit behavioral cloning policies with energy-based models (EBM) often outperform common explicit (Mean Square Error, or Mixture Density) behavioral cloning policies, including on tasks with high-dimensional action spaces and visual image inputs. We find these policies provide competitive results or outperform state-of-the-art offline reinforcement learning methods on the challenging human-expert tasks from the D4RL benchmark suite, despite using no reward information. In the real world, robots with implicit policies can learn complex and remarkably subtle behaviors on contact-rich tasks from human demonstrations, including tasks with high combinatorial complexity and tasks requiring 1mm precision.

Prerequisites

The code for this project uses python 3.7+ and the following pip packages:

python3 -m pip install --upgrade pip
pip install \
  absl-py==0.12.0 \
  gin-config==0.4.0 \
  matplotlib==3.4.3 \
  mediapy==1.0.3 \
  opencv-python==4.5.3.56 \
  pybullet==3.1.6 \
  scipy==1.7.1 \
  tensorflow==2.6.0 \
  tensorflow-probability==0.13.0 \
  tf-agents-nightly==0.10.0.dev20210930 \
  tqdm==4.62.2

(Optional): For Mujoco support, see docs/mujoco_setup.md. Recommended to skip it unless you specifically want to run the Adroit and Kitchen environments.

Quickstart: from 0 to a trained IBC policy in 10 minutes.

Step 1: Install listed Python packages above in Prerequisites.

Step 2: Run unit tests (should take less than a minute), and do this from the directory just above the top-level ibc directory:

./ibc/run_tests.sh

Step 3: Check that Tensorflow has GPU access:

python3 -c "import tensorflow as tf; print(tf.test.is_gpu_available())"

If the above prints False, see the following requirements, notably CUDA 11.2 and cuDNN 8.1.0: https://www.tensorflow.org/install/gpu#software_requirements.

Step 4: Let's do an example Block Pushing task, so first let's download oracle data (or see Tasks for how to generate it):

cd ibc/data
wget https://storage.googleapis.com/brain-reach-public/ibc_data/block_push_states_location.zip
unzip block_push_states_location.zip && rm block_push_states_location.zip
cd ../..

Step 5: Set PYTHONPATH to include the directory just above top-level ibc, so if you've been following the commands above it is:

export PYTHONPATH=$PYTHONPATH:${PWD}

Step 6: On that example Block Pushing task, we'll next do a training + evaluation with Implicit BC:

./ibc/ibc/configs/pushing_states/run_mlp_ebm.sh

Some notes:

  • On an example single-GPU machine (GTX 2080 Ti), the above trains at about 18 steps/sec, and should get to high success rates in 5,000 or 10,000 steps (roughly 5-10 minutes of training).
  • The mlp_ebm.gin is just one config, with is meant to be reasonably fast to train, with only 20 evals at each interval, and is not suitable for all tasks. See Tasks for more configs.
  • Due to the --video flag above, you can watch a video of the learned policy in action at: /tmp/ibc_logs/mlp_ebm/ibc_dfo/... navigate to the videos/ttl=7d subfolder, and by default there should be one example .mp4 video saved every time you do an evaluation interval.

(Optional) Step 7: For the pybullet-based tasks, we also have real-time interactive visualization set up through a visualization server, so in one terminal:

cd <path_to>/ibc/..
export PYTHONPATH=$PYTHONPATH:${PWD}
python3 -m pybullet_utils.runServer

And in a different terminal run the oracle a few times with the --shared_memory flag:

cd <path_to>/ibc/..
export PYTHONPATH=$PYTHONPATH:${PWD}
python3 ibc/data/policy_eval.py -- \
  --alsologtostderr \
  --shared_memory \
  --num_episodes=3 \
  --policy=oracle_push \
  --task=PUSH

You're done with Quickstart! See below for more Tasks, and also see docs/codebase_overview.md and docs/workflow.md for additional info.

Tasks

Task: Particle

In this task, the goal is for the agent (black dot) to first go to the green dot, then the blue dot.

Example IBC policy Example MSE policy

Get Data

We can either generate data from scratch, for example for 2D (takes 15 seconds):

./ibc/ibc/configs/particle/collect_data.sh

Or just download all the data for all different dimensions:

cd ibc/data/
wget https://storage.googleapis.com/brain-reach-public/ibc_data/particle.zip
unzip particle.zip && rm particle.zip
cd ../..

Train and Evaluate

Let's start with some small networks, on just the 2D version since it's easiest to visualize, and compare MSE and IBC. Here's a small-network (256x2) IBC-with-Langevin config, where 2 is the argument for the environment dimensionality.

./ibc/ibc/configs/particle/run_mlp_ebm_langevin.sh 2

And here's an idenitcally sized network (256x2) but with MSE config:

./ibc/ibc/configs/particle/run_mlp_mse.sh 2

For the above configurations, we suggest comparing the rollout videos, which you can find at /tmp/ibc_logs/...corresponding_directory../videos/. At the top of this section is shown a comparison at 10,000 training steps for the two different above configs.

And here are the best configs respectfully for IBC (with langevin) and MSE, in this case run on the 16-dimensional environment:

./ibc/ibc/configs/particle/run_mlp_ebm_langevin_best.sh 16
./ibc/ibc/configs/particle/run_mlp_mse_best.sh 16

Note: the _best config is kind of slow for Langevin to train, but even just ./ibc/ibc/configs/particle/run_mlp_ebm_langevin.sh 16 (smaller network) seems to solve the 16-D environment pretty well, and is much faster to train.

Task: Block Pushing (from state observations)

Get Data

We can either generate data from scratch (~2 minutes for 2,000 episodes: 200 each across 10 replicas):

./ibc/ibc/configs/pushing_states/collect_data.sh

Or we can download data from the web:

cd ibc/data/
wget https://storage.googleapis.com/brain-reach-public/ibc_data/block_push_states_location.zip
unzip 'block_push_states_location.zip' && rm block_push_states_location.zip
cd ../..

Train and Evaluate

Here's reasonably fast-to-train config for IBC with DFO:

./ibc/ibc/configs/pushing_states/run_mlp_ebm.sh

Or here's a config for IBC with Langevin:

./ibc/ibc/configs/pushing_states/run_mlp_ebm_langevin.sh

Or here's a comparable, reasonably fast-to-train config for MSE:

./ibc/ibc/configs/pushing_states/run_mlp_mse.sh

Or to run the best configs respectfully for IBC, MSE, and MDN (some of these might be slower to train than the above):

./ibc/ibc/configs/pushing_states/run_mlp_ebm_best.sh
./ibc/ibc/configs/pushing_states/run_mlp_mse_best.sh
./ibc/ibc/configs/pushing_states/run_mlp_mdn_best.sh

Task: Block Pushing (from image observations)

Get Data

Download data from the web:

cd ibc/data/
wget https://storage.googleapis.com/brain-reach-public/ibc_data/block_push_visual_location.zip
unzip 'block_push_visual_location.zip' && rm block_push_visual_location.zip
cd ../..

Train and Evaluate

Here is an IBC with Langevin configuration which should actually converge faster than the IBC-with-DFO that we reported in the paper:

./ibc/ibc/configs/pushing_pixels/run_pixel_ebm_langevin.sh

And here are the best configs respectfully for IBC (with DFO), MSE, and MDN:

./ibc/ibc/configs/pushing_pixels/run_pixel_ebm_best.sh
./ibc/ibc/configs/pushing_pixels/run_pixel_mse_best.sh
./ibc/ibc/configs/pushing_pixels/run_pixel_mdn_best.sh

Task: D4RL Adroit and Kitchen

Get Data

The D4RL human demonstration training data used for the paper submission can be downloaded using the commands below. This data has been processed into a .tfrecord format from the original D4RL data format:

cd ibc/data && mkdir -p d4rl_trajectories && cd d4rl_trajectories
wget https://storage.googleapis.com/brain-reach-public/ibc_data/door-human-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/hammer-human-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/kitchen-complete-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/kitchen-mixed-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/kitchen-partial-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/pen-human-v0.zip \
     https://storage.googleapis.com/brain-reach-public/ibc_data/relocate-human-v0.zip
unzip '*.zip' && rm *.zip
cd ../../..

Run Train Eval:

Here are the best configs respectfully for IBC (with Langevin), and MSE: On a 2080 Ti GPU test, this IBC config trains at only 1.7 steps/sec, but it is about 10x faster on TPUv3.

./ibc/ibc/configs/d4rl/run_mlp_ebm_langevin_best.sh pen-human-v0
./ibc/ibc/configs/d4rl/run_mlp_mse_best.sh pen-human-v0

The above commands will run on the pen-human-v0 environment, but you can swap this arg for whichever of the provided Adroit/Kitchen environments.

Here also is an MDN config you can try. The network size is tiny but if you increase it heavily then it seems to get NaNs during training. In general MDNs can be finicky. A solution should be possible though.

./ibc/ibc/configs/d4rl/run_mlp_mdn.sh pen-human-v0

Summary for Reproducing Results

For the tasks that we've been able to open-source, results from the paper should be reproducible by using the linked data and command-line args below.

Task Figure/Table in paper Data Train + Eval commands
Coordinate regression Figure 4 See colab See colab
D4RL Adroit + Kitchen Table 2 Link Link
N-D particle Figure 6 Link Link
Simulated pushing, single target, states Table 3 Link Link
Simulated pushing, single target, pixels Table 3 Link Link

Citation

If you found our paper/code useful in your research, please consider citing:

@article{florence2021implicit,
    title={Implicit Behavioral Cloning},
    author={Florence, Pete and Lynch, Corey and Zeng, Andy and Ramirez, Oscar and Wahid, Ayzaan and Downs, Laura and Wong, Adrian and Lee, Johnny and Mordatch, Igor and Tompson, Jonathan},
    journal={Conference on Robot Learning (CoRL)},
    month = {November},
    year={2021}
}
Owner
Google Research
Google Research
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
SmoothGrad implementation in PyTorch

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Münster 57 Nov 12, 2022
Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNNs fruits360 Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class. CNN on a pretrained model Build a CNN on a pretrained model, Res

Ricky Chuang 1 Mar 07, 2022
A library that allows for inference on probabilistic models

Bean Machine Overview Bean Machine is a probabilistic programming language for inference over statistical models written in the Python language using

Meta Research 234 Dec 29, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
an implementation of softmax splatting for differentiable forward warping using PyTorch

softmax-splatting This is a reference implementation of the softmax splatting operator, which has been proposed in Softmax Splatting for Video Frame I

Simon Niklaus 338 Dec 28, 2022
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models Code accompanying CVPR'20 paper of the same title. Paper lin

Alex Damian 7k Dec 30, 2022
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
The code for paper Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation Algorithm

Quantum Qubit Rotation Algorithm Single qubit rotation gates $$ U(\Theta)=\bigotimes_{i=1}^n R_x (\phi_i) $$ QQRA for the max-cut problem This code wa

SheffieldWang 0 Oct 18, 2021
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
Utilities and information for the signals.numer.ai tournament

dsignals Utilities and information for the signals.numer.ai tournament using eodhistoricaldata.com eodhistoricaldata.com provides excellent historical

Degerhan Usluel 23 Dec 18, 2022
Emotional conditioned music generation using transformer-based model.

This is the official repository of EMOPIA: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation. The paper has b

hung anna 96 Nov 09, 2022
Plato: A New Framework for Federated Learning Research

a new software framework to facilitate scalable federated learning research.

System <a href=[email protected] Lab"> 192 Jan 05, 2023
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023