This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Overview

Feedback Prize - Evaluating Student Writing

This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The competition can be found here: https://www.kaggle.com/competitions/feedback-prize-2021/

Datasets required

Use this command to convert roberta-large to LSG

$ python convert_roberta_checkpoint.py \
                        --initial_model roberta-large \
                        --model_name lsg-roberta-large \
                        --max_sequence_length 1536

Follow following instructions to manually add fast tokenizer to transformer library:

# The following is necessary if you want to use the fast tokenizer for deberta v2 or v3
# This must be done before importing transformers
import shutil
from pathlib import Path

# Path to installed transformer library
transformers_path = Path("/opt/conda/lib/python3.7/site-packages/transformers")

input_dir = Path("../input/deberta-v2-3-fast-tokenizer")

convert_file = input_dir / "convert_slow_tokenizer.py"
conversion_path = transformers_path/convert_file.name

if conversion_path.exists():
    conversion_path.unlink()

shutil.copy(convert_file, transformers_path)
deberta_v2_path = transformers_path / "models" / "deberta_v2"

for filename in ['tokenization_deberta_v2.py', 'tokenization_deberta_v2_fast.py']:
    filepath = deberta_v2_path/filename
    if filepath.exists():
        filepath.unlink()

    shutil.copy(input_dir/filename, filepath)

After this ../input directory should look something like this.

.
├── input
│   ├── feedback-prize-2021
│   │   ├── train/
│   │   ├── test/
│   │   ├── sample_submission.csv
│   │   └── train.csv
│   ├── lsg-roberta-large
│   │   ├── config.json
│   │   ├── merges.txt
│   │   ├── modeling.py
│   │   ├── pytorch_model.bin
│   │   ├── special_tokens_map.json
│   │   ├── tokenizer.json
│   │   ├── tokenizer_config.json
│   │   └── vocab.json
│   ├── deberta-v2-3-fast-tokenizer
│   │   ├── convert_slow_tokenizer.py
│   │   ├── deberta__init__.py
│   │   ├── tokenization_auto.py
│   │   ├── tokenization_deberta_v2.py
│   │   ├── tokenization_deberta_v2_fast.py
│   │   └── transformers__init__.py
│   └── feedbackgroupshufflesplit1337
│       └── groupshufflesplit_1337.p

or you can change the DATA_BASE_DIR in SETTINGS.json to download the files in your desired location.

Models and Training

  • Deberta large, Deberta xlarge, Deberta v2 xlarge, Deberta v3 large, Funnel transformer large and BigBird are trained using trainer.py

Example:

$ python trainer.py --fold 0 --pretrained_model google/bigbird-roberta-large

where pretrained_model can be microsoft/deberta-large, microsoft/deberta-xlarge, microsoft/deberta-v2-xlarge, microsoft/deberta-v3-large, funnel-transformer/large or google/bigbird-roberta-large

  • Deberta large with LSTM head and jaccard loss is trained using debertabilstm_trainer.py

Example:

$ python debertabilstm_trainer.py --fold 0
  • Longformer large with LSTM head is trained using longformerwithbilstm_trainer.py

Example:

$ python longformerwithbilstm_trainer.py --fold 0
  • LSG Roberta is trained with lsgroberta_trainer.py

Example:

$ python lsgroberta_trainer.py --fold 0
  • YOSO is trained with yoso_trainer.py

Example:

$ python yoso_trainer.py --fold 0

Inference

After training all the models, the outputs were pushed to Kaggle Datasets.

And the final inference kernel can be found here: https://www.kaggle.com/code/cdeotte/2nd-place-solution-cv741-public727-private740?scriptVersionId=90301836

Solution writeup: https://www.kaggle.com/competitions/feedback-prize-2021/discussion/313389

Owner
Udbhav Bamba
Deep Learning || Computer Vision || Machine Learning
Udbhav Bamba
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing

Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-

tensordiffeq 74 Dec 09, 2022
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ

Lau 100 Dec 25, 2022
Face Detection and Alignment using Multi-task Cascaded Convolutional Networks (MTCNN)

Face-Detection-with-MTCNN Face detection is a computer vision problem that involves finding faces in photos. It is a trivial problem for humans to sol

Chetan Hirapara 3 Oct 07, 2022
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022
Planner_backend - Academic planner application designed for students and counselors.

Planner (backend) Academic planner application designed for students and advisors.

2 Dec 31, 2021
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
Depression Asisstant GDSC Challenge Solution

Depression Asisstant can help you give solution. Please using Python version 3.9.5 for contribute.

Ananda Rauf 1 Jan 30, 2022
Fine-Tune EleutherAI GPT-Neo to Generate Netflix Movie Descriptions in Only 47 Lines of Code Using Hugginface And DeepSpeed

GPT-Neo-2.7B Fine-Tuning Example Using HuggingFace & DeepSpeed Installation cd venv/bin ./pip install -r ../../requirements.txt ./pip install deepspe

Nikita 180 Jan 05, 2023
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning This repository is the official PyTorch implementation of CORE-Text, a

Jingyang Lin 18 Aug 11, 2022
codes for Image Inpainting with External-internal Learning and Monochromic Bottleneck

Image Inpainting with External-internal Learning and Monochromic Bottleneck This repository is for the CVPR 2021 paper: 'Image Inpainting with Externa

97 Nov 29, 2022
Face Recognition and Emotion Detector Device

Face Recognition and Emotion Detector Device Orange PI 1 Python 3.10.0 + Django 3.2.9 Project's file explanation Django manage.py Django commands hand

BootyAss 2 Dec 21, 2021
[NeurIPS 2021] Low-Rank Subspaces in GANs

Low-Rank Subspaces in GANs Figure: Image editing results using LowRankGAN on StyleGAN2 (first three columns) and BigGAN (last column). Low-Rank Subspa

112 Dec 28, 2022
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p

36 Dec 12, 2022
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

117 Dec 28, 2022
Machine Learning Platform for Kubernetes

Reproduce, Automate, Scale your data science. Welcome to Polyaxon, a platform for building, training, and monitoring large scale deep learning applica

polyaxon 3.2k Dec 23, 2022
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022