Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

Overview

OCR Ground Truth for Historical Commentaries

DOI License: CC BY 4.0

The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public domain subset of scholarly commentaries on Sophocles' Ajax. Its main goal is to enable the evaluation of the OCR quality on printed materials that contain a mix of Latin and polytonic Greek scripts. It consists of five 19C commentaries written in German, English, and Latin, for a total of 3,356 GT lines.

Data

GT4HistComment are contained in data/, where each sub-folder corresponds to a different publication (i.e. commentary). For each each commentary we provide the following data:

  • <commentary_id>/GT-pairs: pairs of image/text files for each GT line
  • <commentary_id>/imgs: original images on which the OCR was performed
  • <commentary_id>/<commentary_id>_olr.tsv: OLR annotations with image region coordinates and layout type ground truth label

The OCR output produced by the Kraken + Ciaconna pipeline was manually corrected by a pool of annotators using the Lace platform. In order to ensure the quality of the ground truth datasets, an additional verification of all transcriptions made in Lace was carried out by an annotator on line-by-line pairs of image and corresponding text.

Commentary overview

ID Commentator Year Languages Image source Line example
bsb10234118 Lobeck [1] 1835 Greek, Latin BSB
sophokle1v3soph Schneidewin [2] 1853 Greek, German Internet Archive
cu31924087948174 Campbell [3] 1881 Greek, English Internet Archive
sophoclesplaysa05campgoog Jebb [4] 1896 Greek, English Internet Archive
Wecklein1894 Wecklein [5] 1894 [5] Greek. German internal

Stats

Line, word and char counts for each commentary are indicated in the following table. Detailled counts for each region can be found here.

ID Commentator Type lines words all chars greek chars
bsb10234118 Lobeck training 574 2943 16081 5344
bsb10234118 Lobeck groundtruth 202 1491 7917 2786
sophokle1v3soph Schneidewin training 583 2970 16112 3269
sophokle1v3soph Schneidewin groundtruth 382 1599 8436 2191
cu31924087948174 Campbell groundtruth 464 2987 14291 3566
sophoclesplaysa05campgoog Jebb training 561 4102 19141 5314
sophoclesplaysa05campgoog Jebb groundtruth 324 2418 10986 2805
Wecklein1894 Wecklein groundtruth 211 1912 9556 3268

Commentary editions used:

  • [1] Lobeck, Christian August. 1835. Sophoclis Aiax. Leipzig: Weidmann.
  • [2] Sophokles. 1853. Sophokles Erklaert von F. W. Schneidewin. Erstes Baendchen: Aias. Philoktetes. Edited by Friedrich Wilhelm Schneidewin. Leipzig: Weidmann.
  • [3] Lewis Campbell. 1881. Sophocles. Oxford : Clarendon Press.
  • [4] Wecklein, Nikolaus. 1894. Sophokleus Aias. München: Lindauer.
  • [5] Jebb, Richard Claverhouse. 1896. Sophocles: The Plays and Fragments. London: Cambridge University Press.

Citation

If you use this dataset in your research, please cite the following publication:

@inproceedings{romanello_optical_2021,
  title = {Optical {{Character Recognition}} of 19th {{Century Classical Commentaries}}: The {{Current State}} of {{Affairs}}},
  booktitle = {The 6th {{International Workshop}} on {{Historical Document Imaging}} and {{Processing}} ({{HIP}} '21)},
  author = {Romanello, Matteo and Sven, Najem-Meyer and Robertson, Bruce},
  year = {2021},
  publisher = {{Association for Computing Machinery}},
  address = {{Lausanne}},
  doi = {10.1145/3476887.3476911}
}

Acknowledgements

Data in this repository were produced in the context of the Ajax Multi-Commentary project, funded by the Swiss National Science Foundation under an Ambizione grant PZ00P1_186033.

Contributors: Carla Amaya (UNIL), Sven Najem-Meyer (EPFL), Matteo Romanello (UNIL), Bruce Robertson (Mount Allison University).

You might also like...
Official Repo for Ground-aware Monocular 3D Object Detection for Autonomous Driving

Visual 3D Detection Package: This repo aims to provide flexible and reproducible visual 3D detection on KITTI dataset. We expect scripts starting from

[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

Using LSTM to detect spoofing attacks in an Air-Ground network
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system

ObjectDrawer-ToolBox is a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system, Object Drawer.

Implementation of
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

A two-stage U-Net for high-fidelity denoising of historical recordings
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Comments
  • adds line-, word- and char-counts to README.md

    adds line-, word- and char-counts to README.md

    Adds a table to README.md as suggested by reviewer 1. The table also link to a more complete table, itself a public version of spreadsheet OCR evaluation and stats!detailed_counts. Note that the publishable version is an external reference to our private version, meaning that actualising the latter will also update the former.

    opened by sven-nm 0
  • Pages à exclure - OCR

    Pages à exclure - OCR

    La page contient les schémas métriques des passages. De ce fait l'OCR ne les reconnaît pas, de plus la correction de l'OCR n'a pas été achevée.

    Voici les pages à exclure : sophoclesplaysa05campgoog_0072.png (Jebb, p. 72)

    opened by camaya28 0
Releases(v1.0)
Owner
Ajax Multi-Commentary
How does a classical hero die in the digital age? Using Sophocles’ Ajax to create a commentary on commentaries.
Ajax Multi-Commentary
Creative Applications of Deep Learning w/ Tensorflow

Creative Applications of Deep Learning w/ Tensorflow This repository contains lecture transcripts and homework assignments as Jupyter Notebooks for th

Parag K Mital 1.5k Dec 30, 2022
[NeurIPS'21] Projected GANs Converge Faster

[Project] [PDF] [Supplementary] [Talk] This repository contains the code for our NeurIPS 2021 paper "Projected GANs Converge Faster" by Axel Sauer, Ka

798 Jan 04, 2023
Code for Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021)

Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021) Hang Zhou, Yasheng Sun, Wayne Wu, Chen Cha

Hang_Zhou 628 Dec 28, 2022
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
Semi-automated OpenVINO benchmark_app with variable parameters

Semi-automated OpenVINO benchmark_app with variable parameters. User can specify multiple options for any parameters in the benchmark_app and the progam runs the benchmark with all combinations of gi

Yasunori Shimura 8 Apr 11, 2022
Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)

Discovering Non-monotonic Autoregressive Orderings with Variational Inference Description This package contains the source code implementation of the

Xuanlin (Simon) Li 10 Dec 29, 2022
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a

Jia Li 256 Dec 24, 2022
IDA file loader for UF2, created for the DEFCON 29 hardware badge

UF2 Loader for IDA The DEFCON 29 badge uses the UF2 bootloader, which conveniently allows you to dump and flash the firmware over USB as a mass storag

Kevin Colley 6 Feb 08, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
DC3: A Learning Method for Optimization with Hard Constraints

DC3: A learning method for optimization with hard constraints This repository is by Priya L. Donti, David Rolnick, and J. Zico Kolter and contains the

CMU Locus Lab 57 Dec 26, 2022
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022
[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Fudan Zhang Vision Group 897 Jan 05, 2023
Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting

Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting #Dataset The folder "Dataset" contains the dataset use in this work and m

0 Jan 08, 2022
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022
Deep motion transfer

animation-with-keypoint-mask Paper The right most square is the final result. Softmax mask (circles): \ Heatmap mask: \ conda env create -f environmen

9 Nov 01, 2022
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
GenshinMapAutoMarkTools - Tools To add/delete/refresh resources mark in Genshin Impact Map

使用说明 适配 windows7以上 64位 原神1920x1080窗口(其他分辨率后续适配) 待更新渊下宫 English version is to be

Zero_Circle 209 Dec 28, 2022