Graphsignal Logger

Overview

Graphsignal Logger

Overview

Graphsignal is an observability platform for monitoring and troubleshooting production machine learning applications. It helps ML engineers, MLOps teams and data scientists to quickly address issues with data and models as well as proactively analyze model performance and availability. Learn more at graphsignal.ai.

Model Dashboard

AI Observability

  • Model monitoring. Monitor offline and online predictions for data validity and anomalies, data drift and concept drift, prediction latency, exceptions, system metrics and more.
  • Automatic issue detection. Graphsignal automatically detects and notifies on issues in data and models, no need to manually setup and maintain complex rules.
  • Root cause analysis. Analyse prediction outliers and issue-related samples for faster problem root cause identification.
  • Model framework and deployment agnostic. Monitor models serving online, in streaming apps, accessed via APIs or offline, running batch predictions.
  • Any scale and data size. Graphsignal logger only sends data statistics and samples allowing it to scale with your application and data.
  • Team access. Easily add team members to your account, as many as you need.

Documentation

See full documentation at graphsignal.ai/docs.

Getting Started

Installation

Install the Python logger by running

pip install graphsignal

Or clone and install the GitHub repository.

git clone https://github.com/graphsignal/graphsignal.git
python setup.py install

And import the package in your application

import graphsignal

Configuration

Configure the logger by specifying the API key.

graphsignal.configure(api_key='my_api_key')

To get an API key, sign up for a free trial account at graphsignal.ai. The key can then be found in your account's Settings / API Keys page.

Logging session

Get logging session for a deployed model identified by deployment name. Multiple sessions can be used in parallel in case of multi-model scrips or servers.

sess = graphsignal.session(deployment_name='model1_prod')

If a model is versioned you can set the version as a model attribute.

Set model attributes.

sess.set_attribute('my attribute', 'value123')

Some system attributes, such as Python version and OS are added automatically.

Prediction Logging

Log single or batch model prediction/inference data. Pass prediction data according to supported data formats using list, dict, pandas.DataFrame or numpy.ndarray.

Computed data statistics such as feature and class distributions are uploaded at certain intervals and on process exit. Additionally, random and outlier prediction instances may be uploaded.

# Examples of input features and output classes.
x = pandas.DataFrame(data=[[0.1, 'A'], [0.2, 'B']], columns=['feature1', 'feature2'])
y = numpy.asarray([[0.2, 0.8], [0.1, 0.9]])

sess.log_prediction(input_data=x, output_data=y)

Track metrics. The last set value is used when metric is aggregated.

sess.log_metric('my_metric', 1.0)

Log any prediction-related event or exception.

sess.log_event(description='My event', attributes={'my_attr': '123'})

Measure prediction latency and record any exceptions.

with sess.measure_latency()
    my_model.predict(X)

See prediction logging API reference for full documentation.

Example

import numpy as np
from tensorflow import keras
import graphsignal

# Configure Graphsignal logger
graphsignal.configure(api_key='my_api_key')

# Get logging session for the model
sess = graphsignal.session(deployment_name='mnist_prod')


model = keras.models.load_model('mnist_model.h5')

(_, _), (x_test, _) = keras.datasets.mnist.load_data()
x_test = x_test.astype("float32") / 255
x_test = np.expand_dims(x_test, -1)

# Measure predict call latency
with sess.measure_latency()
    output = model.predict(x_test)

# See supported data formats description at 
# https://graphsignal.ai/docs/python-logger/supported-data-formats
sess.log_prediction(output_data=output)

# Report a metric
sess.log_metric('my_metric', 1.2)

See more examples.

Performance

When logging predictions, the data is windowed and only when certain time interval or window size conditions are met, data statistics are computed and sent along with a few sample and outlier data instances by the background thread.

Since only data statistics are sent to our servers, there is no limitation on logged data size and it doesn't have a direct effect on logging performance.

Security and Privacy

Graphsignal logger can only open outbound connections to log-api.graphsignal.ai and send data, no inbound connections or commands are possible.

Please make sure to exclude or anonymize any personally identifiable information (PII) when logging model data and events.

Troubleshooting

To enable debug logging, add debug_mode=True to configure(). If the debug log doesn't give you any hints on how to fix a problem, please report it to our support team via your account.

In case of connection issues, please make sure outgoing connections to https://log-api.graphsignal.ai are allowed.

Exploring basic lambda calculus in Python

Lambda Exploring basic lambda calculus in Python. In this repo I have used the lambda function built into python to get a more intiutive feel of lambd

Bhardwaj Bhaskar 2 Nov 12, 2021
Framework for creating efficient data processing pipelines

Aqueduct Framework for creating efficient data processing pipelines. Contact Feel free to ask questions in telegram t.me/avito-ml Key Features Increas

avito.tech 137 Dec 29, 2022
A simple python project which control paint brush in microsoft paint app

Paint Buddy In Python A simple python project which control paint brush in micro

Ordinary Pythoneer 1 Dec 27, 2021
VirtualBox Power Driver for MAAS (Metal as a Service)

vboxpower VirtualBox Power Driver for MAAS (Metal as a Service) A way to manage the power of VirtualBox virtual machines via the MAAS webhook driver.

Saeid Bostandoust 131 Dec 17, 2022
Choice Coin 633 Dec 23, 2022
Small projects for python beginners.

Python Mini Projects For Beginners I recently started doing the #100DaysOfCode Challenge in Python. I've used Python before, but I had switched to JS

Sreekesh Iyer 10 Dec 12, 2022
A MCPI hack with many features.

Morpheus 2.0 A MCPI hack with many features To Use: You will need to install the keyboard, pysimplegui, and MCPI python modules and you will need to e

11 Oct 11, 2022
Palestra sobre desenvolvimento seguro de imagens e containers para a DockerCon 2021 sala Brasil

Segurança de imagens e containers direto na pipeline Palestra sobre desenvolvimento seguro de imagens e containers para a DockerCon 2021 sala Brasil.

Fernando Guisso 10 May 19, 2022
Yet another Airflow plugin using CLI command as RESTful api, supports Airflow v2.X.

中文版文档 Airflow Extended API Plugin Airflow Extended API, which export airflow CLI command as REST-ful API to extend the ability of airflow official API

Eric Cao 106 Nov 09, 2022
python3 scrip for case conversion of source code files writen in fixed form fortran

convert_FORTRAN_case python3 scrip for case conversion of source code files writen in fixed form fortran python3 scrip for case conversion of source c

7 Sep 20, 2022
dta Convert Dict To Attributes!

dta (Dict to Attributes) dta is very small dict (or json) to attributes converter. It is only have 1 files and applied to every python versions.

Rukchad Wongprayoon 0 Dec 31, 2021
A basic python project which replicates the functionalities on an 8 Ball.

Magic-8-Ball To the people who wish to make decisions using a Magic 8 Ball but can't get one? I gotchu. This is a basic python project which replicate

3 Jun 24, 2021
Update your Nintendo Switch cheats with one click, or a bit more~

Interactive-ASM-Cheats-Updater This updater unlocks your ability of updating most of the ASM cheats for Nintendo Switch. Table of Contents Functions Q

zzpong 63 Dec 27, 2022
Webcash is an experimental e-cash (electronic cash)

Webcash Webcash is an experimental new electronic cash ("e-cash") that enables decentralized and instant payments to anyone, anywhere in the world. Us

Mark Friedenbach 0 Feb 26, 2022
Imports an object based on a string import_string('package.module:function_name')() - Based on werkzeug.utils

DEPRECATED don't use it. Please do: import importlib foopath = 'src.apis.foo.Foo' module_name = '.'.join(foopath.split('.')[:-1]) # to get src.apis.f

Bruno Rocha Archived Projects 11 Nov 12, 2022
A bunch of codes for procedurally modeling and texturing futuristic cities.

Procedural Futuristic City This is our final project for CPSC 479. We created a procedural futuristic city complete with Worley noise procedural textu

1 Dec 22, 2021
Python library for the analysis of dynamic measurements

Python library for the analysis of dynamic measurements The goal of this library is to provide a starting point for users in metrology and related are

Physikalisch-Technische Bundesanstalt - Department 9.4 'Metrology for the digital Transformation' 18 Dec 21, 2022
Dotfiles & list of programs

dotfiles & list of programs So I wanted to just backup my most used files. I have a bad habit, sometimes I get tired of a distro and do a wipe and sta

2 Sep 04, 2022
Python module to work with Magneto Database directly without using broken Magento 2 core

Python module to work with Magneto Database directly without using broken Magento 2 core

Egor Shitikov 13 Nov 10, 2022
Statistics Calculator module for all types of Stats calculations.

Statistics-Calculator This Calculator user the formulas and methods to find the statistical values listed. Statistics Calculator module for all types

2 May 29, 2022