HW3 ― GAN, ACGAN and UDA

Overview

HW3 ― GAN, ACGAN and UDA

In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN and ACGAN for generating human face images, and the model of DANN for classifying digit images from different domains.

For more details, please click this link to view the slides of HW3.

Usage

To start working on this assignment, you should clone this repository into your local machine by using the following command.

git clone https://github.com/dlcv-spring-2019/hw3-
   
    .git

   

Note that you should replace with your own GitHub username.

Dataset

In the starter code of this repository, we have provided a shell script for downloading and extracting the dataset for this assignment. For Linux users, simply use the following command.

bash ./get_dataset.sh

The shell script will automatically download the dataset and store the data in a folder called hw3_data. Note that this command by default only works on Linux. If you are using other operating systems, you should download the dataset from this link and unzip the compressed file manually.

⚠️ IMPORTANT NOTE ⚠️
You should keep a copy of the dataset only in your local machine. DO NOT upload the dataset to this remote repository. If you extract the dataset manually, be sure to put them in a folder called hw3_data under the root directory of your local repository so that it will be included in the default .gitignore file.

Evaluation

To evaluate your UDA models in Problems 3 and 4, you can run the evaluation script provided in the starter code by using the following command.

python3 hw3_eval.py $1 $2
  • $1 is the path to your predicted results (e.g. hw3_data/digits/mnistm/test_pred.csv)
  • $2 is the path to the ground truth (e.g. hw3_data/digits/mnistm/test.csv)

Note that for hw3_eval.py to work, your predicted .csv files should have the same format as the ground truth files we provided in the dataset as shown below.

image_name label
00000.png 4
00001.png 3
00002.png 5
... ...

Submission Rules

Deadline

108/05/08 (Wed.) 01:00 AM

Late Submission Policy

You have a five-day delay quota for the whole semester. Once you have exceeded your quota, the credit of any late submission will be deducted by 30% each day.

Note that while it is possible to continue your work in this repository after the deadline, we will by default grade your last commit before the deadline specified above. If you wish to use your quota or submit an earlier version of your repository, please contact the TAs and let them know which commit to grade. For more information, please check out this post.

Academic Honesty

  • Taking any unfair advantages over other class members (or letting anyone do so) is strictly prohibited. Violating university policy would result in an F grade for this course (NOT negotiable).
  • If you refer to some parts of the public code, you are required to specify the references in your report (e.g. URL to GitHub repositories).
  • You are encouraged to discuss homework assignments with your fellow class members, but you must complete the assignment by yourself. TAs will compare the similarity of everyone’s submission. Any form of cheating or plagiarism will not be tolerated and will also result in an F grade for students with such misconduct.

Submission Format

Aside from your own Python scripts and model files, you should make sure that your submission includes at least the following files in the root directory of this repository:

  1. hw3_ .pdf
    The report of your homework assignment. Refer to the "Grading" section in the slides for what you should include in the report. Note that you should replace with your student ID, NOT your GitHub username.
  2. hw3_p1p2.sh
    The shell script file for running your GAN and ACGAN models. This script takes as input a folder and should output two images named fig1_2.jpg and fig2_2.jpg in the given folder.
  3. hw3_p3.sh
    The shell script file for running your DANN model. This script takes as input a folder containing testing images and a string indicating the target domain, and should output the predicted results in a .csv file.
  4. hw3_p4.sh
    The shell script file for running your improved UDA model. This script takes as input a folder containing testing images and a string indicating the target domain, and should output the predicted results in a .csv file.

We will run your code in the following manner:

bash ./hw3_p1p2.sh $1
bash ./hw3_p3.sh $2 $3 $4
bash ./hw3_p4.sh $2 $3 $4
  • $1 is the folder to which you should output your fig1_2.jpg and fig2_2.jpg.
  • $2 is the directory of testing images in the target domain (e.g. hw3_data/digits/mnistm/test).
  • $3 is a string that indicates the name of the target domain, which will be either mnistm, usps or svhn.
    • Note that you should run the model whose target domain corresponds with $3. For example, when $3 is mnistm, you should make your prediction using your "USPS→MNIST-M" model, NOT your "MNIST-M→SVHN" model.
  • $4 is the path to your output prediction file (e.g. hw3_data/digits/mnistm/test_pred.csv).

🆕 NOTE
For the sake of conformity, please use the python3 command to call your .py files in all your shell scripts. Do not use python or other aliases, otherwise your commands may fail in our autograding scripts.

Packages

Below is a list of packages you are allowed to import in this assignment:

python: 3.5+
tensorflow: 1.13
keras: 2.2+
torch: 1.0
h5py: 2.9.0
numpy: 1.16.2
pandas: 0.24.0
torchvision: 0.2.2
cv2, matplotlib, skimage, Pillow, scipy
The Python Standard Library

Note that using packages with different versions will very likely lead to compatibility issues, so make sure that you install the correct version if one is specified above. E-mail or ask the TAs first if you want to import other packages.

Remarks

  • If your model is larger than GitHub’s maximum capacity (100MB), you can upload your model to another cloud service (e.g. Dropbox). However, your shell script files should be able to download the model automatically. For a tutorial on how to do this using Dropbox, please click this link.
  • DO NOT hard code any path in your file or script, and the execution time of your testing code should not exceed an allowed maximum of 10 minutes.
  • If we fail to run your code due to not following the submission rules, you will receive 0 credit for this assignment.

Q&A

If you have any problems related to HW3, you may

Owner
grassking100
A researcher study in bioinformatics and deep learning. To see other repositories: https://bitbucket.org/grassking100/?sort=-updated_on&privacy=public.
grassking100
Visualizing lattice vibration information from phonon dispersion to atoms (For GPUMD)

Phonon-Vibration-Viewer (For GPUMD) Visualizing lattice vibration information from phonon dispersion for primitive atoms. In this tutorial, we will in

Liangting 6 Dec 10, 2022
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
Fluency ENhanced Sentence-bert Evaluation (FENSE), metric for audio caption evaluation. And Benchmark dataset AudioCaps-Eval, Clotho-Eval.

FENSE The metric, Fluency ENhanced Sentence-bert Evaluation (FENSE), for audio caption evaluation, proposed in the paper "Can Audio Captions Be Evalua

Zhiling Zhang 13 Dec 23, 2022
Caffe implementation for Hu et al. Segmentation for Natural Language Expressions

Segmentation from Natural Language Expressions This repository contains the Caffe reimplementation of the following paper: R. Hu, M. Rohrbach, T. Darr

10 Jul 27, 2021
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Faury Louis 1 Jan 22, 2022
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! 🎄 🎅 To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm Ågren 5 Dec 29, 2022
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022
[cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

PS-MT [cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation by Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu, Vasile

Yuyuan Liu 132 Jan 03, 2023
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022
Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Surviv

5 Oct 20, 2022
Code for paper [ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot] (ICCV 2021, oral))

ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot This repository is the official PyTorch implementation of ICCV-21 pape

Jiarui 21 May 09, 2022
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model

SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model Edresson Casanova, Christopher Shulby, Eren Gölge, Nicolas Michael Müller, Frede

Edresson Casanova 92 Dec 09, 2022
automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..)

Automatic-precautionary-guard automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..) what is this

badra 0 Jan 06, 2022