Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Overview

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision

https://arxiv.org/abs/2003.00393

Abstract

Active learning (AL) aims to minimize labeling efforts for data-demanding deep neural networks (DNNs) by selecting the most representative data points for annotation. However, currently used methods are ill-equipped to deal with biased data. The main motivation of this paper is to consider a realistic setting for pool-based semi-supervised AL, where the unlabeled collection of train data is biased. We theoretically derive an optimal acquisition function for AL in this setting. It can be formulated as distribution shift minimization between unlabeled train data and weakly-labeled validation dataset. To implement such acquisition function, we propose a low-complexity method for feature density matching using Fisher kernel (FK) self-supervision as well as several novel pseudo-label estimators. Our FK-based method outperforms state-of-the-art methods on MNIST, SVHN, and ImageNet classification while requiring only 1/10th of processing. The conducted experiments show at least 40% drop in labeling efforts for the biased class-imbalanced data compared to existing methods.

BibTex Citation

If you like our paper or code, please cite its CVPR2020 preprint using the following BibTex:

@article{gudovskiy2020al,
  title={Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision},
  author={Gudovskiy, Denis and Hodgkinson, Alec and Yamaguchi, Takuya and Tsukizawa, Sotaro},
  journal={arXiv:2003.00393},
  year={2020}
}

Installation

  • Install v1.1+ PyTorch by selecting your environment on the website and running the appropriate command.
  • Clone this repository: code has been tested on Python 3+.
  • Install DALI for ImageNet only: tested on v0.11.0.
  • Optionally install Kornia for MC-based pseudo-label estimation metrics. However, due to strict Python 3.6+ requirement for this lib, by default, we provide our simple rotation function. Use Kornia to experiment with other sampling strategies.

Datasets

Data and temporary files like descriptors, checkpoints and index files are saved into ./local_data/{dataset} folder. For example, MNIST scripts are located in ./mnist and its data is saved into ./local_data/MNIST folder, correspondingly. In order to get statistically significant results, we execute multiple runs of the same configuration with randomized weights and training dataset splits and save results to ./local_data/{dataset}/runN folders. We suggest to check that you have enough space for large-scale datasets.

MNIST, SVHN

Datasets will be automatically downloaded and converted to PyTorch after the first run of AL.

ImageNet

Due to large size, ImageNet has to be manually downloaded and preprocessed using these scripts.

Code Organization

  • Scripts are located in ./{dataset} folder.
  • Main parts of the framework are contained in only few files: "unsup.py", "gen_descr.py", "main_descr.py" as well as execution script "run.py".
  • Dataset loaders are located in ./{dataset}/custom_datasets and DNN models in ./{dataset}/custom_models
  • The "unsup.py" is a script to train initial model by unsupervised pretraining using rotation method and to produce all-random weights initial model.
  • The "gen_descr.py" generates descriptor database files in ./local_data/{dataset}/runN/descr.
  • The "main_descr.py" performs AL feature matching, adds new data to training dataset and retrains model with new augmented data. Its checkpoints are saved into ./local_data/{dataset}/runN/checkpoint.
  • The run.py" can read these checkpoint files and perform AL iteration with retraining.
  • The run_plot.py" generates performance curves that can be found in the paper.
  • To make confusion matrices and t-SNE plots, use extra "visualize_tsne.py" script for MNIST only.
  • VAAL code can be found in ./vaal folder, which is adopted version of official repo.

Running Active Learning Experiments

  • Install minimal required packages from requirements.txt.
  • The command interface for all methods is combined into "run.py" script. It can run multiple algorithms and data configurations.
  • The script parameters may differ depending on the dataset and, hence, it is better to use "python3 run.py --help" command.
  • First, you have to set configuration in cfg = list() according to its format and execute "run.py" script with "--initial" flag to generate initial random and unsupervised pretrained models.
  • Second, the same script should be run without "--initial".
  • Third, after all AL steps are executed, "run_plot.py" should be used to reproduce performance curves.
  • All these steps require basic understanding of the AL terminology.
  • Use the default configurations to reproduce paper results.
  • To speed up or parallelize multiple runs, use --run-start, --run-stop parameters to limit number of runs saved in ./local_data/{dataset}/runN folders. The default setting is 10 runs for MNIST, 5 for SVHN and 1 for ImageNet.
pip3 install -U -r requirements.txt
python3 run.py --gpu 0 --initial # generate initial models
python3 run.py --gpu 0 --unsupervised 0 # AL with the initial all-random parameters model
python3 run.py --gpu 0 --unsupervised 1 # AL with the initial model pretrained using unsupervised rotation method

Reference Results

MNIST

MNIST LeNet test accuracy: (a) no class imbalance, (b) 100x class imbalance, and (c) ablation study of pseudo-labeling and unsupervised pretraining (100x class imbalance). Our method decreases labeling by 40% compared to prior works for biased data.

SVHN and ImageNet

SVHN ResNet-10 test (top) and ImageNet ResNet-18 val (bottom) accuracy: (a,c) no class imbalance and (b,d) with 100x class imbalance.

MNIST Visualizations

Confusion matrix (top) and t-SNE (bottom) of MNIST test data at AL iteration b=3 with 100x class imbalance for: (a) varR with E=1, K=128, (b) R_{z,g}, S=hat{p}(y,z), L=80 (ours), and (c) R_{z,g}, S=y, L=80. Dots and balls represent correspondingly correctly and incorrectly classified images for t-SNE visualizations. The underrepresented classes {5,8,9} have on average 36% accuracy for prior work (a), while our method (b) increases their accuracy to 75%. The ablation configuration (c) shows 89% theoretical limit of our method.

Owner
Denis
Machine and Deep Learning Researcher
Denis
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023
Official implementations of PSENet, PAN and PAN++.

News (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23. (2021/04/08) PSENet and PAN are included in MMOCR. Introduction

395 Dec 14, 2022
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

VOS This is the source code accompanying the paper VOS: Learning What You Don’t

248 Dec 25, 2022
LBK 20 Dec 02, 2022
Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021
Feature board for ERPNext

ERPNext Feature Board Feature board for ERPNext Development Prerequisites k3d kubectl helm bench Install K3d Cluster # export K3D_FIX_CGROUPV2=1 # use

Revant Nandgaonkar 16 Nov 09, 2022
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
Julia package for multiway (inverse) covariance estimation.

TensorGraphicalModels TensorGraphicalModels.jl is a suite of Julia tools for estimating high-dimensional multiway (tensor-variate) covariance and inve

Wayne Wang 3 Sep 23, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
Code release of paper "Deep Multi-View Stereo gone wild"

Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of

François Darmon 53 Dec 24, 2022
Official implementation for "Style Transformer for Image Inversion and Editing" (CVPR 2022)

Style Transformer for Image Inversion and Editing (CVPR2022) https://arxiv.org/abs/2203.07932 Existing GAN inversion methods fail to provide latent co

Xueqi Hu 153 Dec 02, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021