Code release of paper "Deep Multi-View Stereo gone wild"

Overview

Deep MVS gone wild

Pytorch implementation of "Deep MVS gone wild" (Paper | website)

This repository provides the code to reproduce the experiments of the paper. It implements extensive comparison of Deep MVS architecture, training data and supervision.

If you find this repository useful for your research, please consider citing

@article{
  author    = {Darmon, Fran{\c{c}}ois  and
               Bascle, B{\'{e}}n{\'{e}}dicte  and
               Devaux, Jean{-}Cl{\'{e}}ment  and
               Monasse, Pascal  and
               Aubry, Mathieu},
  title     = {Deep Multi-View Stereo gone wild},
  year      = {2021},
  url       = {https://arxiv.org/abs/2104.15119},
}

Installation

  • Python packages: see requirements.txt

  • Fusibile:

git clone https://github.com/YoYo000/fusibile 
cd fusibile
cmake .
make .
ln -s EXE ./fusibile
  • COLMAP: see the github repository for installation details then link colmap executable with ln -s COLMAP_DIR/build/src/exe/colmap colmap

Training

You may find all the pretrained models here (120 Mo) or alternatively you can train models using the following instructions.

Data

Download the following data and extract to folder datasets

The directory structure should be as follow:

datasets
├─ blended
├─ dtu_train
├─ MegaDepth_v1
├─ undistorted_md_geometry

The data is already preprocessed for DTU and BlendedMVS. For MegaDepth, run python preprocess.py for generating the training data.

Script

The training script is train.py, launch python train.py --help for all the options. For example

  • python train.py --architecture vis_mvsnet --dataset md --supervised --logdir best_sup --world_size 4 --batch_size 4 for training the best performing setup for images in the wild.
  • python train.py --architecture mvsnet-s --dataset md --unsupervised --upsample --occ_masking --epochs 5 --lrepochs 4:10 --logdir best_unsup --world_size 3 for the best unsupervised model.

The models are saved in folder trained_models

Evaluations

We provide code for both depthmap evaluation and 3D reconstruction evaluation

Data

Download the following links and extract them to datasets

  • BlendedMVS (27.5 GB) same link as BlendedMVS training data

  • YFCC depth maps (1.1Go)

  • DTU MVS benchmark: Create directory datasets/dtu_eval and extract the following files

    In the end the folder structure should be

    datasets
    ├─ dtu_eval
        ├─ ObsMask
        ├─ images
        ├─ Points
            ├─ stl
    
  • YFCC 3D reconstruction (1.5Go)

Depthmap evaluation

python depthmap_eval.py --model MODEL --dataset DATA

  • MODEL is the name of a folder found in trained_models
  • DATA is the evaluation dataset, either yfcc or blended

3D reconstruction

See python reconstruction_pipeline.py --help for a complete list of parameters for 3D reconstruction. For running the whole evaluation for a trained model with the parameters used in the paper, run

  • scripts/eval3d_dtu.sh --model MODEL (--compute_metrics) for DTU evaluation
  • scripts/eval3d_yfcc.sh --model MODEL (--compute_metrics) for YFCC 3D evaluation

The reconstruction will be located in datasets/dtu_eval/Points or datasets/yfcc_data/Points

Acknowledgments

This repository is inspired by MVSNet_pytorch and MVSNet repositories. We also adapt the official implementations of Vis_MVSNet and CVP_MVSNet.

Copyright

Deep MVS Gone Wild All rights reseved to Thales LAS and ENPC.

This code is freely available for academic use only and Provided “as is” without any warranty.

Modification are allowed for academic research provided that the following conditions are met :
  * Redistributions of source code or any format must retain the above copyright notice and this list of conditions.
  * Neither the name of Thales LAS and ENPC nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
Owner
François Darmon
PhD student in 3D computer vision at Imagine team ENPC and Thales LAS FRANCE
François Darmon
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022
Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

Friederike Metz 7 Apr 23, 2022
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
A symbolic-model-guided fuzzer for TLS

tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "

69 Dec 20, 2022
T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time The first Lidar-only odometry framework with high performance based on tr

Pengwei Zhou 183 Dec 01, 2022
Photographic Image Synthesis with Cascaded Refinement Networks - Pytorch Implementation

Photographic Image Synthesis with Cascaded Refinement Networks-Pytorch (https://arxiv.org/abs/1707.09405) This is a Pytorch implementation of cascaded

Soumya Tripathy 63 Mar 27, 2022
Malmo Collaborative AI Challenge - Team Pig Catcher

The Malmo Collaborative AI Challenge - Team Pig Catcher Approach The challenge involves 2 agents who can either cooperate or defect. The optimal polic

Kai Arulkumaran 66 Jun 29, 2022
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs In this work, we propose an algorithm DP-SCAFFOLD(-warm), whic

19 Nov 10, 2022
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

William Falcon 141 Dec 30, 2022
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
Autonomous Robots Kalman Filters

Autonomous Robots Kalman Filters The Kalman Filter is an easy topic. However, ma

20 Jul 18, 2022
Pointer networks Tensorflow2

Pointer networks Tensorflow2 原文:https://arxiv.org/abs/1506.03134 仅供参考与学习,内含代码备注 环境 tensorflow==2.6.0 tqdm matplotlib numpy 《pointer networks》阅读笔记 应用场景

HUANG HAO 7 Oct 27, 2022
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Dec 30, 2022
Code release for Hu et al. Segmentation from Natural Language Expressions. in ECCV, 2016

Segmentation from Natural Language Expressions This repository contains the code for the following paper: R. Hu, M. Rohrbach, T. Darrell, Segmentation

Ronghang Hu 88 May 24, 2022
Apply a perspective transformation to a raster image inside Inkscape (no need to use an external software such as GIMP or Krita).

Raster Perspective Apply a perspective transformation to bitmap image using the selected path as envelope, without the need to use an external softwar

s.ouchene 19 Dec 22, 2022
[CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation

RCIL [CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation Chang-Bin Zhang1, Jia-Wen Xiao1, Xialei Liu1, Ying-Cong Chen2

Chang-Bin Zhang 71 Dec 28, 2022
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022