RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

Overview

Multipath RefineNet

A MATLAB based framework for semantic image segmentation and general dense prediction tasks on images.

This is the source code for the following paper and its extension:

  1. RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation; CVPR 2017
    https://arxiv.org/abs/1611.06612
  2. RefineNet extension in TPAMI 2019: DOI Link

Pytorch implementation

This codebase only provides MATLAB and MatConvNet based implementation.

Vladimir Nekrasov kindly provides a Pytorch implementation and a light-weight version of RefineNet at:
https://github.com/DrSleep/refinenet-pytorch

Update notes

  • 23 Dec 2016: We did a major update of our code.
  • (new!) 13 Feb 2018:
    1. Multi-scale prediction and evaluation code are added. We add demo files for multi-scale prediction, fusion and evaluation. Please refer to the Testing section below for more details.
    2. New models available: trained models using improved residual pooling. Available for these datasets: NYUDv2, Person_Parts, PASCAL_Context, SUNRGBD, ADE20k. These models will give better performance than the reported results in our CVPR paper.
    3. New models available: trained models using ResNet-152 for all 7 datasets. Apart from ResNet-101 based models, our ResNet-152 based models of all 7 datasets are now available for download.
    4. Updated trained model for VOC2012: this updated model is slightly better than the previous one. We previously uploaded a wrong model.
    5. All models are now available in Google Drive and Baidu Pan.
    6. More details are provided on testing, training and implementation. Please refer to Important notes in each section below.

Results

  • Results on the CityScapes Dataset (single scale prediction using ResNet-101 based RefineNet) RefineNet Results on the CityScapes Dataset

Trained models

  • (new!) Trained models for the following datasets are available for download.
  1. PASCAL VOC 2012
  2. Cityscapes
  3. NYUDv2
  4. Person_Parts
  5. PASCAL_Context
  6. SUNRGBD
  7. ADE20k
  • Downloads for the above datasets. Put the downloaded models in ./model_trained/
  • Important notes:
    • For the test set performance of our method on the dataset PASCAl VOC and Cityscapes, kindly note that we do not use any images in the validation set for training. Our models are trained only using the training set images.
    • The trained models of the the following datasets are using improved residual pooling: NYUDv2, Person_Parts, PASCAL_Context, SUNRGBD, ADE20k. These models will give better performance than the reported results in our CVPR paper. Please also refer to the Network architecture section below for more details about improved pooling.
    • The model for VOC2012 is updated. We previously uploaded a wrong model.

Network architecture and implementation

  • You can find the network graphs that illustrate our architecture in the folder net_graphs. Please refer to our paper for more details.
  • We include in this folder the details of improved residual pooling which improves the residual pooling block described in our CVPR paper.
  • Important notes:
    • In our up-sampling and fusion layer, we simply use down-sampling for gradient back-propagation. Please refer to the implementation of our fusion layer for details: My_sum_layer.m.
    • please refer to our training demo files for more details on implementation

Installation

  • Install MatConvNet and CuDNN. We have modified MatConvNet for our task. A modified copy of MatConvNet is provided in ./lib/. You need to compile the provided MatConvNet before running. Details of this modification and compiling can be found in main/my_matconvnet_resnet/README.md.

  • An example script for exporting lib paths is main/my_matlab.sh

  • Download the following ImageNet pre-trained models and place them in ./model_trained/:

    • imagenet-resnet-50-dag, imagenet-resnet-101-dag, imagenet-resnet-152-dag.

    They can be downloaded from: MatConvNet, we also have a copy in Google Drive, Baidu Pan.

Testing

1. Multi-scale prediction and evaluation (new!)

  • First download the trained models and put them in ./model_trained/. Please refer to the above section Trained Models.

  • Then refer to the below example scripts for prediction on your images:

    • demo_predict_mscale_[dataset name].m
    • e.g., demo_predict_mscale_voc.m, demo_predict_mscale_nyud, demo_predict_mscale_person_parts
  • You may need to carefully read through the comments in these demo scripts before using.

  • Important notes:

    • In the default setting, the example scripts will perform multi-scale prediction and fuse multi-scale results to generate final prediction.
    • The generated masks and scores maps will be saved in your disk. Note that the score maps are saved in the format of uint8 with values in [0 255]. You need to cast them into double and normalize into [0 1] if you want to use them.
    • The above demo files are able to perform multi-scale prediction and evaluation (e.g., in terms of IoU scores) in a single run. However, in the default setting, the performance evaluation part is disabled. Please refer to the comments in the demo files to turn on the performance evaluation.
    • Trained models using improved residual pooling will give better performance than the reported results in our CVPR paper. Please refer to the above section Trained models for more details.
    • For the images from NYUDv2 dataset, you may need to remove the white borders of the images before applying our models. More details and crop tools can be found in the NYUDv2 dataset webpage.

2. Single scale prediction and evaluation

  • Single scale prediction and evaluation can be done by changing the scale setting in the multi-scale prediction demo files. Please refer the the above section for multi-scale prediction.

  • We also provide simplified demo files for prediction with much less configurations. They are only for single scale prediction. Examples can be found at: demo_test_simple_voc.m and demo_test_simple_city.m.

3. Evaluation and fusion on saved results (score map files and mask files) (new!)

  • We provide an example script to perform multi-scale fusion on a number of predictions (score maps) saved in your disk:
    • demo_fuse_saved_prediction_voc.m : fuse multiple cached predictions to generate the final prediction
  • We provide an example script to evaluate the prediction masks saved in your disk:
    • demo_evaluate_saved_prediction_voc.m : evaluate the segmentation performance, e.g., in terms of IoU scores.

Training

  • The following demo files are provided for training a RefineNet on your own dataset. Please carefully read through the comments in the demo files before using this training code.
    • demo_refinenet_train.m
    • demo_refinenet_train_reduce_learning_rate.m
  • Important notes:
    • We use step-wise policy to reduce learning rate, and more importantly, you need to manually reduce the learning rate during the training stage. The setting of maximum training iteration just serves as a simple example and it should be adapted to your datasets. More details can be found in the comments of the training demo files.
    • We use the improved version of chained pooling in this training code, which may achieve better result than using the above provided models.

Citation

If you find the code useful, please cite our work as

@inproceedings{Lin:2017:RefineNet,
  title = {Refine{N}et: {M}ulti-Path Refinement Networks for High-Resolution Semantic Segmentation},
  shorttitle = {RefineNet: Multi-Path Refinement Networks},
  booktitle = {CVPR},
  author = {Lin, G. and Milan, A. and Shen, C. and Reid, I.},
  month = jul,
  year = {2017}
}

and

@article{lin2019refinenet,
  title={RefineNet: Multi-Path Refinement Networks for Dense Prediction},
  author={Lin, Guosheng and Liu, Fayao and Milan, Anton and Shen, Chunhua and Reid, Ian},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  year={2019},
  publisher={IEEE},
  doi={10.1109/TPAMI.2019.2893630}, 
}

License

For academic usage, the code is released under the permissive BSD license. For any commercial purpose, please contact the authors.

Owner
Guosheng Lin
Guosheng Lin
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

DeepMind 29 Dec 29, 2022
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation

Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation This repository contains the Pytorch implementation of the proposed

Devavrat Tomar 19 Nov 10, 2022
Real Time Object Detection and Classification using Yolo Algorithm.

Real time Object detection & Classification using YOLO algorithm. Real Time Object Detection and Classification using Yolo Algorithm. What is Object D

Ketan Chawla 1 Apr 17, 2022
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

54 Nov 25, 2022
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Kim SungDong 194 Dec 28, 2022
Auxiliary Raw Net (ARawNet) is a ASVSpoof detection model taking both raw waveform and handcrafted features as inputs, to balance the trade-off between performance and model complexity.

Overview This repository is an implementation of the Auxiliary Raw Net (ARawNet), which is ASVSpoof detection system taking both raw waveform and hand

6 Jul 08, 2022
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Jan 05, 2023
Neuralnetwork - Basic Multilayer Perceptron Neural Network for deep learning

Neural Network Just a basic Neural Network module Usage Example Importing Module

andreecy 0 Nov 01, 2022
Codebase for the Summary Loop paper at ACL2020

Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training

Canny Lab @ The University of California, Berkeley 44 Nov 04, 2022
Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Facebook Research 69 Dec 29, 2022
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se

Intelligent Vision for Robotics in Complex Environment 10 Nov 07, 2022
An LSTM based GAN for Human motion synthesis

GAN-motion-Prediction An LSTM based GAN for motion synthesis has a few issues reading H3.6M data from A.Jain et al , will fix soon. Prediction of the

Amogh Adishesha 9 Jun 17, 2022
Codes and Data Processing Files for our paper.

Code Scripts and Processing Files for EEG Sleep Staging Paper 1. Folder Tree ./src_preprocess (data preprocessing files for SHHS and Sleep EDF) sleepE

Chaoqi Yang 18 Dec 12, 2022
Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

5 Nov 15, 2022