Codebase of deep learning models for inferring stability of mRNA molecules

Overview

Kaggle OpenVaccine Models

Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challenge and accompanying manuscript "Predictive models of RNA degradation through dual crowdsourcing", Wayment-Steele et al (2021) (full citation when available).

Models contained here are:

"Nullrecurrent": A reconstruction of winning solution by Jiayang Gao. Link to original notebooks provided below.

"DegScore-XGBoost": A model based the original DegScore model and XGBoost.

NB on other historic names for models

  • The Nullrecurrent model was called "OV" model in some instances and the .h5 model files for the Nullrecurrent model are labeled "ov".

  • The DegScore-XGBoost model was called the "BT" model in Eterna analysis.

Organization

scripts: Python scripts to perform inference.

notebooks: Python notebooks to perform inference.

model_files: Store .h5 model files used at inference time.

data: Data corresponding to Kaggle challenge and to subsequent tests on mRNAs.

data/Kaggle_RYOS_data

This directory contains training set and test sets in .csv and in .json form.

Kaggle_RYOS_trainset_prediction_output_Sep2021.txt contains predictions from the Nullrecurrent code in this repository.

Model MCRMSEs were evaluated by uploading submissions to the Kaggle competition website at https://www.kaggle.com/c/stanford-covid-vaccine.

data/mRNA_233x_data

This directory contains original data and scripts to reproduce model analysis from manuscript.

Because all the original formats are slightly different, the reformat_*.py scripts read in the original formats and reformats them in two forms for each prediction: "FULL" and "PCR" in the directory formatted_predictions.

"FULL" is per-nucleotide predictions for all the nucleotides. "PCR" has had the regions outside the RT-PCR sequencing set to NaN.

python collate_predictions.py reads in all the data and outputs all_predictions_233x.csv

RegenerateFigure5.ipynb reproduces the final scatterplot comparisons.

posthoc_code_predictions contains predictions from the Nullrecurrent code model contained in this repository. To generate these predictions use the sequence file in the mRNA_233x_data folder and run the following command(s):

python scripts/nullrecurrent_inference.py -d deg_Mg_pH10 -i 233_sequences.txt -o 233x_nullrecurrent_output_Oct2021_deg_Mg_50C.txt,

etc.

Dependencies

Install via pip install requirements.txt or conda install --file requirements.txt.

Not pip-installable: EternaFold, Vienna, and Arnie, see below.

Setup

  1. Install git-lfs (best to do before git-cloning this KaggleOpenVaccine repo).

  2. Install EternaFold (the nullrecurrent model uses this), available for free noncommercial use here.

  3. Install ViennaRNA (the DegScore-XGBoost model uses this), available here.

  4. Git clone Arnie, which wraps EternaFold in python and allows RNA thermodynamic calculations across many packages. Follow instructions here to link EternaFold to it.

  5. Add path to this repository as KOV_PATH (so that script can find path to stored model files):

export KOV_PATH='/path/to/KaggleOpenVaccine'

Usage

To run the nullrecurrent winning solution on one construct, given in example.txt:

CGC

Run

python scripts/nullrecurrent_inference.py [-d deg] -i example.txt -o predict.txt

where the deg is one of the following options

deg_Mg_pH10
deg_pH10
deg_Mg_50C
deg_50C

Similarly, for the DegScore-XGBoost model :

python scripts/degscore-xgboost_inference.py -i example.txt -o predict.txt

This write a text file of output predictions to predict.txt:

(Nullrecurrent output)

2.1289976365, 2.650808962, 2.1869660805000004

(DegScore-XGBoost output)

0.2697107, 0.37091506, 0.48528114

A note on energy model versions

The predictions in the Kaggle competition and for the manuscript were performed with EternaFold parameters and CONTRAfold-SE code. The currently available EternaFold code will result in slightly different values. For more on the difference, see the EternaFold README.

Individual Kaggle Solutions

This code is based on the winning solution for the Open Vaccine Kaggle Competition Challenge. The competition can be found here:

https://www.kaggle.com/c/stanford-covid-vaccine/overview

This code is also the supplementary material for the Kaggle Competition Solution Paper. The individual Kaggle writeups for the top solutions that have been featured in that paper can be found in the following table:

Team Name Team Members Rank Link to the solution
Nullrecurrent Jiayang Gao 1 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189620
Kazuki ** 2 Kazuki Onodera, Kazuki Fujikawa 2 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189709
Striderl Hanfei Mao 3 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189574
FromTheWheel & Dyed & StoneShop Gilles Vandewiele, Michele Tinti, Bram Steenwinckel 4 https://www.kaggle.com/group16/covid-19-mrna-4th-place-solution
tito Takuya Ito 5 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189691
nyanp Taiga Noumi 6 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189241
One architecture Shujun He 7 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189564
ishikei Keiichiro Ishi 8 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/190314
Keep going to be GM Youhan Lee 9 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189845
Social Distancing Please Fatih Öztürk,Anthony Chiu,Emin Ozturk 11 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189571
The Machine Karim Amer,Mohamed Fares 13 https://www.kaggle.com/c/stanford-covid-vaccine/discussion/189585
You might also like...
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

Spearmint Bayesian optimization codebase

Spearmint Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code n

A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art methods on major benchmarks like KITTI(ViP) and nuScenes(CBGS).

Comments
  • HW edits

    HW edits

    Changes:

    Remove hardcoded paths in scripts

    Remove tmp csv output files for nullrecurrent

    Rename to reflect model naming in paper "nullrecurrent"

    Reorganize example inputs and outputs

    Update README

    Add requirements file

    opened by HWaymentSteele 0
Releases(v1.0)
  • v1.0(Sep 30, 2022)

Owner
Eternagame
Eternagame
Enigma-Plus - Python based Enigma machine simulator with some extra features

Enigma-Plus Python based Enigma machine simulator with some extra features Examp

1 Jan 05, 2022
Generative Adversarial Text to Image Synthesis

Text To Image Synthesis This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the pa

Hao 575 Jan 08, 2023
Multiband spectro-radiometric satellite image analysis with K-means cluster algorithm

Multi-band Spectro Radiomertric Image Analysis with K-means Cluster Algorithm Overview Multi-band Spectro Radiomertric images are images comprising of

Chibueze Henry 6 Mar 16, 2022
OpenL3: Open-source deep audio and image embeddings

OpenL3 OpenL3 is an open-source Python library for computing deep audio and image embeddings. Please refer to the documentation for detailed instructi

Music and Audio Research Laboratory - NYU 326 Jan 02, 2023
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.

AutoTrader AutoTrader is Python-based platform intended to help in the development, optimisation and deployment of automated trading systems. From sim

Kieran Mackle 485 Jan 09, 2023
A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving

A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving Isaac Han, Dong-Hyeok Park, and Kyung-Joong Kim IEEE Access

13 Dec 27, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Let Python optimize the best stop loss and take profits for your TradingView strategy.

TradingView Machine Learning TradeView is a free and open source Trading View bot written in Python. It is designed to support all major exchanges. It

Robert Roman 473 Jan 09, 2023
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha

Winnie Xu 95 Nov 26, 2021
The repo of the preprinting paper "Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection"

Inferring Spatial Uncertainty in Object Detection A teaser version of the code for the paper Labels Are Not Perfect: Inferring Spatial Uncertainty in

ZINING WANG 21 Mar 03, 2022
links and status of cool gradio demos

awesome-demos This is a list of some wonderful demos & applications built with Gradio. Here's how to contribute yours! 🖊️ Natural language processing

Gradio 96 Dec 30, 2022
Sentinel-1 vessel detection model used in the xView3 challenge

sar_vessel_detect Code for the AI2 Skylight team's submission in the xView3 competition (https://iuu.xview.us) for vessel detection in Sentinel-1 SAR

AI2 6 Sep 10, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 73 Dec 24, 2022
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative

Tao Xu 1.2k Dec 26, 2022
A highly efficient, fast, powerful and light-weight anime downloader and streamer for your favorite anime.

AnimDL - Download & Stream Your Favorite Anime AnimDL is an incredibly powerful tool for downloading and streaming anime. Core features Abuses the dev

KR 759 Jan 08, 2023
Where2Act: From Pixels to Actions for Articulated 3D Objects

Where2Act: From Pixels to Actions for Articulated 3D Objects The Proposed Where2Act Task. Given as input an articulated 3D object, we learn to propose

Kaichun Mo 69 Nov 28, 2022
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.

Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne

11 Dec 14, 2022