Soft actor-critic is a deep reinforcement learning framework for training maximum entropy policies in continuous domains.

Related tags

Deep Learningsac
Overview

This repository is no longer maintained. Please use our new Softlearning package instead.

Soft Actor-Critic

Soft actor-critic is a deep reinforcement learning framework for training maximum entropy policies in continuous domains. The algorithm is based on the paper Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor presented at ICML 2018.

This implementation uses Tensorflow. For a PyTorch implementation of soft actor-critic, take a look at rlkit by Vitchyr Pong.

See the DIAYN documentation for using SAC for learning diverse skills.

Getting Started

Soft Actor-Critic can be run either locally or through Docker.

Prerequisites

You will need to have Docker and Docker Compose installed unless you want to run the environment locally.

Most of the models require a Mujoco license.

Docker installation

If you want to run the Mujoco environments, the docker environment needs to know where to find your Mujoco license key (mjkey.txt). You can either copy your key into /.mujoco/mjkey.txt , or you can specify the path to the key in your environment variables:

export MUJOCO_LICENSE_PATH=
   
    /mjkey.txt

   

Once that's done, you can run the Docker container with

docker-compose up

Docker compose creates a Docker container named soft-actor-critic and automatically sets the needed environment variables and volumes.

You can access the container with the typical Docker exec-command, i.e.

docker exec -it soft-actor-critic bash

See examples section for examples of how to train and simulate the agents.

To clean up the setup:

docker-compose down

Local installation

To get the environment installed correctly, you will first need to clone rllab, and have its path added to your PYTHONPATH environment variable.

  1. Clone rllab
cd 
   
    
git clone https://github.com/rll/rllab.git
cd rllab
git checkout b3a28992eca103cab3cb58363dd7a4bb07f250a0
export PYTHONPATH=$(pwd):${PYTHONPATH}

   
  1. Download and copy mujoco files to rllab path: If you're running on OSX, download https://www.roboti.us/download/mjpro131_osx.zip instead, and copy the .dylib files instead of .so files.
mkdir -p /tmp/mujoco_tmp && cd /tmp/mujoco_tmp
wget -P . https://www.roboti.us/download/mjpro131_linux.zip
unzip mjpro131_linux.zip
mkdir 
   
    /rllab/vendor/mujoco
cp ./mjpro131/bin/libmujoco131.so 
    
     /rllab/vendor/mujoco
cp ./mjpro131/bin/libglfw.so.3 
     
      /rllab/vendor/mujoco
cd ..
rm -rf /tmp/mujoco_tmp

     
    
   
  1. Copy your Mujoco license key (mjkey.txt) to rllab path:
cp 
   
    /mjkey.txt 
    
     /rllab/vendor/mujoco

    
   
  1. Clone sac
cd 
   
    
git clone https://github.com/haarnoja/sac.git
cd sac

   
  1. Create and activate conda environment
cd sac
conda env create -f environment.yml
source activate sac

The environment should be ready to run. See examples section for examples of how to train and simulate the agents.

Finally, to deactivate and remove the conda environment:

source deactivate
conda remove --name sac --all

Examples

Training and simulating an agent

  1. To train the agent
python ./examples/mujoco_all_sac.py --env=swimmer --log_dir="/root/sac/data/swimmer-experiment"
  1. To simulate the agent (NOTE: This step currently fails with the Docker installation, due to missing display.)
python ./scripts/sim_policy.py /root/sac/data/swimmer-experiment/itr_
   
    .pkl

   

mujoco_all_sac.py contains several different environments and there are more example scripts available in the /examples folder. For more information about the agents and configurations, run the scripts with --help flag. For example:

python ./examples/mujoco_all_sac.py --help
usage: mujoco_all_sac.py [-h]
                         [--env {ant,walker,swimmer,half-cheetah,humanoid,hopper}]
                         [--exp_name EXP_NAME] [--mode MODE]
                         [--log_dir LOG_DIR]

mujoco_all_sac.py contains several different environments and there are more example scripts available in the /examples folder. For more information about the agents and configurations, run the scripts with --help flag. For example:

python ./examples/mujoco_all_sac.py --help
usage: mujoco_all_sac.py [-h]
                         [--env {ant,walker,swimmer,half-cheetah,humanoid,hopper}]
                         [--exp_name EXP_NAME] [--mode MODE]
                         [--log_dir LOG_DIR]

Benchmark Results

Benchmark results for some of the OpenAI Gym v2 environments can be found here.

Credits

The soft actor-critic algorithm was developed by Tuomas Haarnoja under the supervision of Prof. Sergey Levine and Prof. Pieter Abbeel at UC Berkeley. Special thanks to Vitchyr Pong, who wrote some parts of the code, and Kristian Hartikainen who helped testing, documenting, and polishing the code and streamlining the installation process. The work was supported by Berkeley Deep Drive.

Reference

@article{haarnoja2017soft,
  title={Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor},
  author={Haarnoja, Tuomas and Zhou, Aurick and Abbeel, Pieter and Levine, Sergey},
  booktitle={Deep Reinforcement Learning Symposium},
  year={2017}
}
Owner
Tuomas Haarnoja
Tuomas Haarnoja
i3DMM: Deep Implicit 3D Morphable Model of Human Heads

i3DMM: Deep Implicit 3D Morphable Model of Human Heads CVPR 2021 (Oral) Arxiv | Poject Page This project is the official implementation our work, i3DM

Tarun Yenamandra 60 Jan 03, 2023
Algorithmic encoding of protected characteristics and its implications on disparities across subgroups

Algorithmic encoding of protected characteristics and its implications on disparities across subgroups This repository contains the code for the paper

Team MIRA - BioMedIA 15 Oct 24, 2022
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
GrabGpu_py: a scripts for grab gpu when gpu is free

GrabGpu_py a scripts for grab gpu when gpu is free. WaitCondition: gpu_memory

tianyuluan 3 Jun 18, 2022
Simple and understandable swin-transformer OCR project

swin-transformer-ocr ocr with swin-transformer Overview Simple and understandable swin-transformer OCR project. The model in this repository heavily r

Ha YongWook 67 Dec 31, 2022
Leaderboard and Visualization for RLCard

RLCard Showdown This is the GUI support for the RLCard project and DouZero project. RLCard-Showdown provides evaluation and visualization tools to hel

Data Analytics Lab at Texas A&M University 246 Dec 26, 2022
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
Facial detection, landmark tracking and expression transfer library for Windows, Linux and Mac

Welcome to the CSIRO Face Analysis SDK. Documentation for the SDK can be found in doc/documentation.html. All code in this SDK is provided according t

Luiz Carlos Vieira 7 Jul 16, 2020
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

demonsjin 58 Dec 06, 2022
Basit bir burç modülü.

Bu modulu burclar hakkinda gundelik bir sekilde bilgi alin diye yaptim ve sizler icin kullanima sunuyorum. Modulun kullanimi asiri basit: Ornek Kullan

Special 17 Jun 08, 2022
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022
An unofficial styleguide and best practices summary for PyTorch

A PyTorch Tools, best practices & Styleguide This is not an official style guide for PyTorch. This document summarizes best practices from more than a

IgorSusmelj 1.5k Jan 05, 2023
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
Real-time object detection on Android using the YOLO network with TensorFlow

TensorFlow YOLO object detection on Android Source project android-yolo is the first implementation of YOLO for TensorFlow on an Android device. It is

Nataniel Ruiz 624 Jan 03, 2023
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022