Charsiu: A transformer-based phonetic aligner

Related tags

Deep Learningcharsiu
Overview

Charsiu: A transformer-based phonetic aligner [arXiv]

Note. This is a preview version. The aligner is under active development. New functions, new languages and detailed documentation will be added soon!

Intro

Charsiu is a phonetic alignment tool, which can:

  • recognise phonemes in a given audio file
  • perform forced alignment using phone transcriptions created in the previous step or provided by the user.
  • directly predict the phone-to-audio alignment from audio (text-independent alignment)

Fun fact: Char Siu is one of the most representative dishes of Cantonese cuisine 🍲 (see wiki).

Tutorial (In progress)

You can directly run our model in the cloud via Google Colab!

  • Forced alignment: Open In Colab
  • Textless alignmnet: Open In Colab

Development plan

  • Package
Items Progress
Documentation Nov 2021
Textgrid support Nov 2021
Model compression TBD
  • Multilingual support
Language Progress
English (American)
Mandarin Chinese Nov 2021
Spanish Dec 2021
English (British) TBD
Cantonese TBD
AAVE TBD

Pretrained models

Our pretrained models are availble at the HuggingFace model hub: https://huggingface.co/charsiu.

Dependencies

pytorch
transformers
datasets
librosa
g2pe
praatio

Training

Coming soon!

Finetuning

Coming soon!

Attribution and Citation

For now, you can cite this tool as:

@article{zhu2019charsiu,
  title={Phone-to-audio alignment without text: A Semi-supervised Approach},
  author={Zhu, Jian and Zhang, Cong and Jurgens, David},
  journal={arXiv preprint arXiv:????????????????????},
  year={2021}
 }

Or

To share a direct web link: https://github.com/lingjzhu/charsiu/.

References

Transformers
s3prl
Montreal Forced Aligner

Disclaimer

This tool is a beta version and is still under active development. It may have bugs and quirks, alongside the difficulties and provisos which are described throughout the documentation. This tool is distributed under MIT liscence. Please see license for details.

By using this tool, you acknowledge:

  • That you understand that this tool does not produce perfect camera-ready data, and that all results should be hand-checked for sanity's sake, or at the very least, noise should be taken into account.

  • That you understand that this tool is a work in progress which may contain bugs. Future versions will be released, and bug fixes (and additions) will not necessarily be advertised.

  • That this tool may break with future updates of the various dependencies, and that the authors are not required to repair the package when that happens.

  • That you understand that the authors are not required or necessarily available to fix bugs which are encountered (although you're welcome to submit bug reports to Jian Zhu ([email protected]), if needed), nor to modify the tool to your needs.

  • That you will acknowledge the authors of the tool if you use, modify, fork, or re-use the code in your future work.

  • That rather than re-distributing this tool to other researchers, you will instead advise them to download the latest version from the website.

... and, most importantly:

  • That neither the authors, our collaborators, nor the the University of Michigan or any related universities on the whole, are responsible for the results obtained from the proper or improper usage of the tool, and that the tool is provided as-is, as a service to our fellow linguists.

All that said, thanks for using our tool, and we hope it works wonderfully for you!

Support or Contact

Please contact Jian Zhu ([email protected]) for technical support.
Contact Cong Zhang ([email protected]) if you would like to receive more instructions on how to use the package.

Owner
jzhu
Michigan Linguistics
jzhu
ZEBRA: Zero Evidence Biometric Recognition Assessment

ZEBRA: Zero Evidence Biometric Recognition Assessment license: LGPLv3 - please reference our paper version: 2020-06-11 author: Andreas Nautsch (EURECO

Voice Privacy Challenge 2 Dec 12, 2021
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
Using deep learning to predict gene structures of the coding genes in DNA sequences of Arabidopsis thaliana

DeepGeneAnnotator: A tool to annotate the gene in the genome The master thesis of the "Using deep learning to predict gene structures of the coding ge

Ching-Tien Wang 3 Sep 09, 2022
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Razvan Valentin Marinescu 51 Nov 23, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022
Neural Network to colorize grayscale images

#colornet Neural Network to colorize grayscale images Results Grayscale Prediction Ground Truth Eiji K used colornet for anime colorization Sources Au

Pavel Hanchar 3.6k Dec 24, 2022
The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

BMC The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing". BibTex entry available here. B

Orange 383 Dec 16, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy Simplex Algorithm is a popular algorithm for linear programmi

Reda BELHAJ 2 Oct 12, 2022
Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding

The Hypersim Dataset For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real i

Apple 1.3k Jan 04, 2023
Official Implementation for the "An Empirical Investigation of 3D Anomaly Detection and Segmentation" paper.

An Empirical Investigation of 3D Anomaly Detection and Segmentation Project | Paper Official PyTorch Implementation for the "An Empirical Investigatio

Eliahu Horwitz 55 Dec 14, 2022
Python Algorithm Interview Book Review

파이썬 알고리즘 인터뷰 책 리뷰 리뷰 IT 대기업에 들어가고 싶은 목표가 있다. 내가 꿈꿔온 회사에서 일하는 사람들의 모습을 보면 멋있다고 생각이 들고 나의 목표에 대한 열망이 강해지는 것 같다. 미래의 핵심 사업 중 하나인 SW 부분을 이끌고 발전시키는 우리나라의 I

SharkBSJ 1 Dec 14, 2021
Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility ICCV2021

Vis2Mesh This is the offical repository of the paper: Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Lear

71 Dec 25, 2022
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch

Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch; pre-processing and post-processing using numpy instead of pytroch.

炼丹去了 21 Dec 12, 2022
My personal code and solution to the Synacor Challenge from 2012 OSCON.

Synacor OSCON Challenge Solution (2012) This repository contains my code and solution to solve the Synacor OSCON 2012 Challenge. If you are interested

2 Mar 20, 2022
"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)

MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022) Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Z

Yuanhao Cai 274 Jan 05, 2023
Efficient neural networks for analog audio effect modeling

micro-TCN Efficient neural networks for audio effect modeling

Christian Steinmetz 94 Dec 29, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
EXplainable Artificial Intelligence (XAI)

EXplainable Artificial Intelligence (XAI) This repository includes the codes for different projects on eXplainable Artificial Intelligence (XAI) by th

4 Nov 28, 2022
Data Augmentation Using Keras and Python

Data-Augmentation-Using-Keras-and-Python Data augmentation is the process of increasing the number of training dataset. Keras library offers a simple

Happy N. Monday 3 Feb 15, 2022