Text classification on IMDB dataset using Keras and Bi-LSTM network

Overview

Text classification on IMDB dataset using Keras and Bi-LSTM

Text classification on IMDB dataset using Keras and Bi-LSTM network.

Usage

python3 main.py

Hyper Parameter

Epoch: 12
Batch size: 128
Dropout: 0.5

Model Accuracy

Loss: 0.0574
Accuracy: 0.9809
Validation Loss: 0.6073
Validation Accuracy: 0.8534

img.png

Terminology

Recurrent Neural Network

Recurrent neural networks (RNN) is a type of neural network that uses previous information during model training. It remember the sequence of the data and use data patterns to give the prediction.

RNN uses feedback loops which makes it different from other neural networks. Those loops help RNN to process the sequence of the data. This loop allows the data to be shared to different nodes and predictions according to the gathered information. This process can be called memory.

RNN and the loops create the networks that allow RNN to share information, and also, the loop structure allows the neural network to take the sequence of input data. RNN converts an independent variable to a dependent variable for its next layer.

rnn.png

Long Short Term Memory

Long short term memory networks (LSTM) are a special kind of RNN. They were introduced to avoid the long-term dependency problem. In regular RNN, the problem frequently occurs when connecting previous information to new information. If RNN could do this, they’d be very useful. This problem is called long-term dependency.

The repeating module in a standard RNN contains a single layer. To remember the information for long periods in the default behaviour of the LSTM. LSTM networks have a similar structure to the RNN, but the memory module or repeating module has a different LSTM. The block diagram of the repeating module will look like the image below.

lstm.png

Bi-Directional Long Short Term Memory

Bidirectional long-short term memory (Bi-LSTM) is the process of making any neural network o have the sequence information in both directions backwards (future to past) or forward (past to future).

In bidirectional, our input flows in two directions, making a Bi-LSTM different from the regular LSTM. With the regular LSTM, we can make input flow in one direction, either backwards or forward. However, in bidirectional, we can make the input flow in both directions to preserve the future and the past information. For a better explanation, let’s have an example.

In the sentence "boys go to…" we can not fill the blank space. Still, when we have a future sentence “boys come out of school”, we can easily predict the past blank space the similar thing we want to perform by our model and bidirectional LSTM allows the neural network to perform this.

bi-lstm.png

Owner
Hamza Rashid
PHP, Laravel, Symfony, MySQL, Python, JavaScript, jQuery, Bootstrap, Sass, Git
Hamza Rashid
DANeS is an open-source E-newspaper dataset by collaboration between DATASET JSC (dataset.vn) and AIV Group (aivgroup.vn)

DANeS - Open-source E-newspaper dataset Source: Technology vector created by macrovector - www.freepik.com. DANeS is an open-source E-newspaper datase

DATASET .JSC 64 Aug 17, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Meta Research 6.4k Jan 08, 2023
DeepPavlov Tutorials

DeepPavlov tutorials DeepPavlov: Sentence Classification with Word Embeddings DeepPavlov: Transfer Learning with BERT. Classification, Tagging, QA, Ze

Neural Networks and Deep Learning lab, MIPT 28 Sep 13, 2022
Задания КЕГЭ по информатике 2021 на Python

КЕГЭ 2021 на Python В этом репозитории мои решения типовых заданий КЕГЭ по информатике в 2021 году, БЕСПЛАТНО! Задания Взяты с https://inf-ege.sdamgia

8 Oct 13, 2022
Twitter Sentiment Analysis using #tag, words and username

Twitter Sentment Analysis Web App using #tag, words and username to fetch data finds Insides of data and Tells Sentiment of the perticular #tag, words or username.

Kumar Saksham 26 Dec 25, 2022
NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

Artefact 114 Dec 15, 2022
Weaviate demo with the text2vec-openai module

Weaviate demo with the text2vec-openai module This repository contains an example of how to use the Weaviate text2vec-openai module. When using this d

SeMI Technologies 11 Nov 11, 2022
open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

中文开放信息抽取系统, open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

7 Nov 02, 2022
Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
Chinese segmentation library

What is loso? loso is a Chinese segmentation system written in Python. It was developed by Victor Lin ( Fang-Pen Lin 82 Jun 28, 2022

A python wrapper around the ZPar parser for English.

NOTE This project is no longer under active development since there are now really nice pure Python parsers such as Stanza and Spacy. The repository w

ETS 49 Sep 12, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 829 Jan 07, 2023
Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks

wav2vec_finetune Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks Initial test: gender recognition on this dat

8 Aug 11, 2022
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

Francis R. Willett 305 Dec 22, 2022
Meta learning algorithms to train cross-lingual NLI (multi-task) models

Meta learning algorithms to train cross-lingual NLI (multi-task) models

M.Hassan Mojab 4 Nov 20, 2022
Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Wake Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec Abstract استخراج خودکار کلمات کلیدی متون کوتاه فارسی با استفاده از word2vec ب

Omid Hajipoor 1 Dec 17, 2021
A multi-voice TTS system trained with an emphasis on quality

TorToiSe Tortoise is a text-to-speech program built with the following priorities: Strong multi-voice capabilities. Highly realistic prosody and inton

James Betker 2.1k Jan 01, 2023
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
ACL'22: Structured Pruning Learns Compact and Accurate Models

☕ CoFiPruning: Structured Pruning Learns Compact and Accurate Models This repository contains the code and pruned models for our ACL'22 paper Structur

Princeton Natural Language Processing 130 Jan 04, 2023
Sentiment Analysis Project using Count Vectorizer and TF-IDF Vectorizer

Sentiment Analysis Project This project contains two sentiment analysis programs for Hotel Reviews using a Hotel Reviews dataset from Datafiniti. The

Simran Farrukh 0 Mar 28, 2022