This is a Python binding to the tokenizer Ucto. Tokenisation is one of the first step in almost any Natural Language Processing task, yet it is not always as trivial a task as it appears to be. This binding makes the power of the ucto tokeniser available to Python. Ucto itself is regular-expression based, extensible, and advanced tokeniser written in C++ (http://ilk.uvt.nl/ucto).

Overview
http://applejack.science.ru.nl/lamabadge.php/python-ucto Project Status: Active – The project has reached a stable, usable state and is being actively developed.

Ucto for Python

This is a Python binding to the tokeniser Ucto. Tokenisation is one of the first step in almost any Natural Language Processing task, yet it is not always as trivial a task as it appears to be. This binding makes the power of the ucto tokeniser available to Python. Ucto itself is a regular-expression based, extensible, and advanced tokeniser written in C++ (https://languagemachines.github.io/ucto).

Installation

Easy

Manual (Advanced)

  • Make sure to first install ucto itself (https://languagemachines.github.io/ucto) and all its dependencies.
  • Install Cython if not yet available on your system: $ sudo apt-get cython cython3 (Debian/Ubuntu, may differ for others)
  • Clone this repository and run: $ sudo python setup.py install (Make sure to use the desired version of python)

Advanced note: If the ucto libraries and includes are installed in a non-standard location, you can set environment variables INCLUDE_DIRS and LIBRARY_DIRS to point to them prior to invocation of setup.py install.

Usage

Import and instantiate the Tokenizer class with a configuration file.

import ucto
configurationfile = "tokconfig-eng"
tokenizer = ucto.Tokenizer(configurationfile)

The configuration files supplied with ucto are named tokconfig-xxx where xxx corresponds to a three letter iso-639-3 language code. There is also a tokconfig-generic one that has no language-specific rules. Alternatively, you can make and supply your own configuration file. Note that for older versions of ucto you may need to provide the absolute path, but the latest versions will find the configurations supplied with ucto automatically. See here for a list of available configuration in the latest version.

The constructor for the Tokenizer class takes the following keyword arguments:

  • lowercase (defaults to False) -- Lowercase all text
  • uppercase (defaults to False) -- Uppercase all text
  • sentenceperlineinput (defaults to False) -- Set this to True if each sentence in your input is on one line already and you do not require further sentence boundary detection from ucto.
  • sentenceperlineoutput (defaults to False) -- Set this if you want each sentence to be outputted on one line. Has not much effect within the context of Python.
  • paragraphdetection (defaults to True) -- Do paragraph detection. Paragraphs are simply delimited by an empty line.
  • quotedetection (defaults to False) -- Set this if you want to enable the experimental quote detection, to detect quoted text (enclosed within some sort of single/double quote)
  • debug (defaults to False) -- Enable verbose debug output

Text is passed to the tokeniser using the process() method, this method returns the number of tokens rather than the tokens itself. It may be called multiple times in sequence. The tokens themselves will be buffered in the Tokenizer instance and can be obtained by iterating over it, after which the buffer will be cleared:

#pass the text (a str) (may be called multiple times),
tokenizer.process(text)

#read the tokenised data
for token in tokenizer:
    #token is an instance of ucto.Token, serialise to string using str()
    print(str(token))

    #tokens remember whether they are followed by a space
    if token.isendofsentence():
        print()
    elif not token.nospace():
        print(" ",end="")

The process() method takes a single string (str), as parameter. The string may contain newlines, and newlines are not necessary sentence bounds unless you instantiated the tokenizer with sentenceperlineinput=True.

Each token is an instance of ucto.Token. It can be serialised to string using str() as shown in the example above.

The following methods are available on ucto.Token instances: * isendofsentence() -- Returns a boolean indicating whether this is the last token of a sentence. * nospace() -- Returns a boolean, if True there is no space following this token in the original input text. * isnewparagraph() -- Returns True if this token is the start of a new paragraph. * isbeginofquote() * isendofquote() * tokentype -- This is an attribute, not a method. It contains the type or class of the token (e.g. a string like WORD, ABBREVIATION, PUNCTUATION, URL, EMAIL, SMILEY, etc..)

In addition to the low-level process() method, the tokenizer can also read an input file and produce an output file, in the same fashion as ucto itself does when invoked from the command line. This is achieved using the tokenize(inputfilename, outputfilename) method:

tokenizer.tokenize("input.txt","output.txt")

Input and output files may be either plain text, or in the FoLiA XML format. Upon instantiation of the Tokenizer class, there are two keyword arguments to indicate this:

  • xmlinput or foliainput -- A boolean that indicates whether the input is FoLiA XML (True) or plain text (False). Defaults to False.
  • xmloutput or foliaoutput -- A boolean that indicates whether the input is FoLiA XML (True) or plain text (False). Defaults to False. If this option is enabled, you can set an additional keyword parameter docid (string) to set the document ID.

An example for plain text input and FoLiA output:

tokenizer = ucto.Tokenizer(configurationfile, foliaoutput=True)
tokenizer.tokenize("input.txt", "ucto_output.folia.xml")

FoLiA documents retain all the information ucto can output, unlike the plain text representation. These documents can be read and manipulated from Python using the FoLiaPy library. FoLiA is especially recommended if you intend to further enrich the document with linguistic annotation. A small example of reading ucto's FoLiA output using this library follows, but consult the documentation for more:

import folia.main as folia
doc = folia.Document(file="ucto_output.folia.xml")
for paragraph in doc.paragraphs():
    for sentence in paragraph.sentence():
        for word in sentence.words()
            print(word.text(), end="")
            if word.space:
                print(" ", end="")
        print()
    print()

Test and Example

Run and inspect example.py.

Comments
  • undefined symbol: ...

    undefined symbol: ...

    Hi there,

    I have a clean ucto installation from sudo apt install ucto. When I compile the python extension, however, I can't import it since it fails with:

    ImportError: /home/manjavacas/.pyenv/versions/anaconda3-4.4.0/lib/python3.6/site-packages/ucto.cpython-36m-x86_64-linux-gnu.so: undefined symbol: _ZN9Tokenizer14TokenizerClass4initERKSs
    

    Not sure what might be going bad, since ucto works perfectly fine and the extension manages to compile without errors.

    Any ideas?

    question 
    opened by emanjavacas 8
  • Compilation fails after latest ucto release

    Compilation fails after latest ucto release

        gcc -pthread -Wno-unused-result -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -march=x86-64 -mtune=generic -O3 -pipe -fno-plt -march=x86-64 -mtune=generic -O3 -pipe -fno-plt -march=x86-64 -mtune=generic -O3 -pipe -fno-plt -fPIC -I/home/proycon/envs/dev
    /include -I/usr/include/ -I/usr/include/libxml2 -I/usr/local/include/ -I/home/proycon/envs/dev/include -I/usr/include/python3.10 -c ucto_wrapper.cpp -o build/temp.linux-x86_64-3.10/ucto_wrapper.o --std=c++0x -D U_USING_ICU_NAMESPACE=1
        ucto_wrapper.cpp: In function ‘PyObject* __pyx_gb_4ucto_9Tokenizer_8generator(__pyx_CoroutineObject*, PyThreadState*, PyObject*)’:
        ucto_wrapper.cpp:3750:86: error: no match for ‘operator=’ (operand types are ‘std::vector<std::__cxx11::basic_string<char> >’ and ‘std::vector<icu_70::UnicodeString>’)
         3750 |   __pyx_cur_scope->__pyx_v_results = __pyx_cur_scope->__pyx_v_self->tok.getSentences();
    
    bug 
    opened by proycon 3
  • Tokenizer does not return lowercase tokens when lowercase = True

    Tokenizer does not return lowercase tokens when lowercase = True

    When I call tokenizer with lowercase True, the output contains tokens with uppercase.

    t = ucto.Tokenizer("tokconfig-nld",lowercase = True,sentencedetection=False,paragraphdetection=False)
    ucto: textcat configured from: /vol/customopt/lamachine.stable/share/ucto/textcat.cfg

    z = x.article_set.all()[0]

    t.process(z.text)

    [str(token) for token in t]

    ["'", 'oor', 'onze', 'redacteur', 'mr.', 'F.', 'KUITENBROUWER', 'AMSTERDAM',

    bug 
    opened by martijnbentum 3
  • Manual installation fails: config.h: no such file or directory

    Manual installation fails: config.h: no such file or directory

    I’ve tried to follow the manual installation instructions on Ubuntu 16.04, but it seems to be missing a file:

    [email protected]:~/git/python-ucto$ git status
    On branch master
    Your branch is up-to-date with 'origin/master'.
    nothing to commit, working directory clean
    [email protected]:~/git/python-ucto$ uname -a
    Linux unut 4.4.0-124-generic #148-Ubuntu SMP Wed May 2 13:00:18 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux
    [email protected]:~/git/python-ucto$ sudo python setup.py install 
    /usr/lib/python2.7/distutils/dist.py:267: UserWarning: Unknown distribution option: 'install_requires'
      warnings.warn(msg)
    running install
    running build
    running build_ext
    cythoning ucto_wrapper2.pyx to ucto_wrapper2.cpp
    building 'ucto' extension
    x86_64-linux-gnu-gcc -pthread -DNDEBUG -g -fwrapv -O2 -Wall -Wstrict-prototypes -fno-strict-aliasing -Wdate-time -D_FORTIFY_SOURCE=2 -g -fstack-protector-strong -Wformat -Werror=format-security -fPIC -I/usr/include/ -I/usr/include/libxml2 -I/usr/local/include/ -I/usr/include/python2.7 -c ucto_wrapper2.cpp -o build/temp.linux-x86_64-2.7/ucto_wrapper2.o --std=c++0x -D U_USING_ICU_NAMESPACE=1
    cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++
    In file included from ucto_wrapper2.cpp:457:0:
    /usr/include/ucto/tokenize.h:33:20: fatal error: config.h: No such file or directory
    compilation terminated.
    error: command 'x86_64-linux-gnu-gcc' failed with exit status 1
    
    opened by texttheater 3
  • TokenRole has no attribute ENDOFQUOTE

    TokenRole has no attribute ENDOFQUOTE

    Hi there, I noticed that isendofquote seems to be broken.

    Seems like a typo on this line:

    https://github.com/proycon/python-ucto/blob/65a7f03a92f60fa28e330a5fb735d75230cdbec4/ucto_wrapper.pyx#L29

    which should be rather ENDOFQUOTE.

    bug 
    opened by emanjavacas 1
  • Question: possible to retrieve untokenized sentences?

    Question: possible to retrieve untokenized sentences?

    May sound silly, but would it be possible to create a method that would allow retrieving sentences from the tokenizer without whitespace between punctuation marks (e.g. untokenized)? E.g. maybe providing a tuple that would hold two versions of a sentence, both the tokenized, as well as the original?

    It is practical to keep the untokenized sentence in some scenarios (e.g. showing them to end users), and reconstructing it by script would be rather hacky and imprecise I guess.

    enhancement 
    opened by pirolen 1
Releases(v0.6.1)
Owner
Maarten van Gompel
Research software engineer - NLP - AI - 🐧 Linux & open-source enthusiast - 🐍 Python/ 🌊C/C++ / 🦀 Rust / 🐚 Shell - 🔐 Privacy, Security & Decentralisation
Maarten van Gompel
This program do translate english words to portuguese

Python-Dictionary This program is used to translate english words to portuguese. Web-Scraping This program use BeautifulSoap to make web scraping, so

João Assalim 1 Oct 10, 2022
The entmax mapping and its loss, a family of sparse softmax alternatives.

entmax This package provides a pytorch implementation of entmax and entmax losses: a sparse family of probability mappings and corresponding loss func

DeepSPIN 330 Dec 22, 2022
Mapping a variable-length sentence to a fixed-length vector using BERT model

Are you looking for X-as-service? Try the Cloud-Native Neural Search Framework for Any Kind of Data bert-as-service Using BERT model as a sentence enc

Han Xiao 11.1k Jan 01, 2023
Py65 65816 - Add support for the 65C816 to py65

Add support for the 65C816 to py65 Py65 (https://github.com/mnaberez/py65) is a

4 Jan 04, 2023
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Dec 30, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

🤗 Contributing to OpenSpeech 🤗 OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform ta

Openspeech TEAM 513 Jan 03, 2023
StarGAN - Official PyTorch Implementation

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Dec 30, 2022
PortaSpeech - PyTorch Implementation

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 276 Dec 26, 2022
PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

YangHeng 567 Jan 07, 2023
Anuvada: Interpretable Models for NLP using PyTorch

Anuvada: Interpretable Models for NLP using PyTorch So, you want to know why your classifier arrived at a particular decision or why your flashy new d

EDGE 102 Oct 01, 2022
Milaan Parmar / Милан пармар / _米兰 帕尔马 170 Dec 13, 2022
Yes it's true :broken_heart:

Information WARNING: No longer hosted If you would like to be on this repo's readme simply fork or star it! Forks 1 - Flowzii 2 - Errorcrafter 3 - vk-

Dropout 66 Dec 31, 2022
Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

AI-BOT Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

Thempra 2 Dec 21, 2022
Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the

hezw.tkcw 20 Dec 12, 2022
Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks

wav2vec_finetune Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks Initial test: gender recognition on this dat

8 Aug 11, 2022
Text editor on python tkinter to convert english text to other languages with the help of ployglot.

Transliterator Text Editor This is a simple transliteration program which is used to convert english word to phonetically matching word in another lan

Merin Rose Tom 1 Jan 16, 2022
Yet Another Sequence Encoder - Encode sequences to vector of vector in python !

Yase Yet Another Sequence Encoder - encode sequences to vector of vectors in python ! Why Yase ? Yase enable you to encode any sequence which can be r

Pierre PACI 12 Aug 19, 2021
Generate a cool README/About me page for your Github Profile

Github Profile README/ About Me Generator 💯 This webapp lets you build a cool README for your profile. A few inputs + ~15 mins = Your Github Profile

Rahul Banerjee 179 Jan 07, 2023
Snowball compiler and stemming algorithms

Snowball is a small string processing language for creating stemming algorithms for use in Information Retrieval, plus a collection of stemming algori

Snowball Stemming language and algorithms 613 Jan 07, 2023
Deduplication is the task to combine different representations of the same real world entity.

Deduplication is the task to combine different representations of the same real world entity. This package implements deduplication using active learning. Active learning allows for rapid training wi

63 Nov 17, 2022