PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Overview

Shape-aware Convolutional Layer (ShapeConv)

PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Introduction

We design a Shape-aware Convolutional(ShapeConv) layer to explicitly model the shape information for enhancing the RGB-D semantic segmentation accuracy. Specifically, we decompose the depth feature into a shape-component and a value component, after which two learnable weights are introduced to handle the shape and value with differentiation. Extensive experiments on three challenging indoor RGB-D semantic segmentation benchmarks, i.e., NYU-Dv2(-13,-40), SUN RGB-D, and SID, demonstrate the effectiveness of our ShapeConv when employing it over five popular architectures.

image

Usage

Installation

  1. Requirements
  • Linux
  • Python 3.6+
  • PyTorch 1.7.0 or higher
  • CUDA 10.0 or higher

We have tested the following versions of OS and softwares:

  • OS: Ubuntu 16.04.6 LTS
  • CUDA: 10.0
  • PyTorch 1.7.0
  • Python 3.6.9
  1. Install dependencies.
pip install -r requirements.txt

Dataset

Download the offical dataset and convert to a format appropriate for this project. See here.

Or download the converted dataset:

Evaluation

  1. Model

    Download trained model and put it in folder ./model_zoo. See all trained models here.

  2. Config

    Edit config file in ./config. The config files in ./config correspond to the model files in ./models.

    1. Set inference.gpu_id = CUDA_VISIBLE_DEVICES. CUDA_VISIBLE_DEVICES is used to specify which GPUs should be visible to a CUDA application, e.g., inference.gpu_id = "0,1,2,3".
    2. Set dataset_root = path_to_dataset. path_to_dataset represents the path of dataset. e.g.,dataset_root = "/home/shape_conv/nyu_v2".
  3. Run

    1. Ditributed evaluation, please run:
    ./tools/dist_test.sh config_path checkpoint_path gpu_num
    • config_path is path of config file;
    • checkpoint_pathis path of model file;
    • gpu_num is the number of GPUs used, note that gpu_num <= len(inference.gpu_id).

    E.g., evaluate shape-conv model on NYU-V2(40 categories), please run:

    ./tools/dist_test.sh configs/nyu/nyu40_deeplabv3plus_resnext101_shape.py model_zoo/nyu40_deeplabv3plus_resnext101_shape.pth 4
    1. Non-distributed evaluation
    python tools/test.py config_path checkpoint_path

Train

  1. Config

    Edit config file in ./config.

    1. Set inference.gpu_id = CUDA_VISIBLE_DEVICES.

      E.g.,inference.gpu_id = "0,1,2,3".

    2. Set dataset_root = path_to_dataset.

      E.g.,dataset_root = "/home/shape_conv/nyu_v2".

  2. Run

    1. Ditributed training
    ./tools/dist_train.sh config_path gpu_num

    E.g., train shape-conv model on NYU-V2(40 categories) with 4 GPUs, please run:

    ./tools/dist_train.sh configs/nyu/nyu40_deeplabv3plus_resnext101_shape.py 4
    1. Non-distributed training
    python tools/train.py config_path

Result

For more result, please see model zoo.

NYU-V2(40 categories)

Architecture Backbone MS & Flip Shape Conv mIOU
DeepLabv3plus ResNeXt-101 False False 48.9%
DeepLabv3plus ResNeXt-101 False True 50.2%
DeepLabv3plus ResNeXt-101 True False 50.3%
DeepLabv3plus ResNeXt-101 True True 51.3%

SUN-RGBD

Architecture Backbone MS & Flip Shape Conv mIOU
DeepLabv3plus ResNet-101 False False 46.9%
DeepLabv3plus ResNet-101 False True 47.6%
DeepLabv3plus ResNet-101 True False 47.6%
DeepLabv3plus ResNet-101 True True 48.6%

SID(Stanford Indoor Dataset)

Architecture Backbone MS & Flip Shape Conv mIOU
DeepLabv3plus ResNet-101 False False 54.55%
DeepLabv3plus ResNet-101 False True 60.6%

Acknowledgments

This repo was developed based on vedaseg.

Owner
Hanchao Leng
Hanchao Leng
Llvlir - Low Level Variable Length Intermediate Representation

Low Level Variable Length Intermediate Representation Low Level Variable Length

Michael Clark 2 Jan 24, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

ActNN : Activation Compressed Training This is the official project repository for ActNN: Reducing Training Memory Footprint via 2-Bit Activation Comp

UC Berkeley RISE 178 Jan 05, 2023
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min

Active Vision Laboratory 411 Dec 26, 2022
Code for MarioNette: Self-Supervised Sprite Learning, in NeurIPS 2021

MarioNette | Webpage | Paper | Video MarioNette: Self-Supervised Sprite Learning Dmitriy Smirnov, Michaël Gharbi, Matthew Fisher, Vitor Guizilini, Ale

Dima Smirnov 28 Nov 18, 2022
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom Binding Challenge

UmojaHack-Africa-2022-African-Snake-Antivenom-Binding-Challenge This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom

Mami Mokhtar 10 Dec 03, 2022
Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks Official implementation of paper Towards Practic

Xiangyu Qi 8 Dec 30, 2022
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
Implementation of paper "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement"

DCS-Net This is the implementation of "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement" Steps to run the model Edit V

Jack Walters 10 Apr 04, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
Physical Anomalous Trajectory or Motion (PHANTOM) Dataset

Physical Anomalous Trajectory or Motion (PHANTOM) Dataset Description This dataset contains the six different classes as described in our paper[]. The

0 Dec 16, 2021
State-Relabeling Adversarial Active Learning

State-Relabeling Adversarial Active Learning Code for SRAAL [2020 CVPR Oral] Requirements torch = 1.6.0 numpy = 1.19.1 tqdm = 4.31.1 AL Results The

10 Jul 14, 2022
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
Python utility to generate filesystem content for Obsidian.

Security Vault Generator Quickly parse, format, and output common frameworks/content for Obsidian.md. There is a strong focus on MITRE ATT&CK because

Justin Angel 73 Dec 02, 2022
Build and run Docker containers leveraging NVIDIA GPUs

NVIDIA Container Toolkit Introduction The NVIDIA Container Toolkit allows users to build and run GPU accelerated Docker containers. The toolkit includ

NVIDIA Corporation 15.6k Jan 01, 2023
A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

1 Nov 30, 2021
Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

MetaSDF: Meta-learning Signed Distance Functions Project Page | Paper | Data Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely Gordon W

Vincent Sitzmann 100 Jan 01, 2023