Model that predicts the probability of a Twitter user being anti-vaccination.

Overview
<style>body {text-align: justify}</style>

AVAXTAR: Anti-VAXx Tweet AnalyzeR

AVAXTAR is a python package to identify anti-vaccine users on twitter. The model outputs complimentary probabilities for [not anti-vaccine, anti-vaccine]. AVAXTAR was trained on 100GB of autolabeled twitter data.

The model supports both Twitter API v1 and v2. To predict with v1, the user needs its consumer key, consumer secret, access token and access secret. The v2 requires only a bearer token, but it can only predict based on user id, not on screen name. Predicting from the v2 api using screen name is only possible if v1 keys are passed to the model.

The methodology behind the package is described in full at {placeholder}

Citation

To cite this paper, please use: {placeholder}

Installation

Attention: this package relies on a pre-trained embedding model from sent2vec, with a size of 5 GB. The model will be automatically downloaded when the package is first instanced on a python script, and will then be saved on the package directory for future usage.

  1. Clone this repo:
git clone https://github.com/Matheus-Schmitz/avaxtar.git
  1. Go to the repo's root:
cd avaxtar/
  1. Install with pip:
pip install .

Usage Example

For prediction, use:

model.predict_from_userid_api_v1(userid)

and:

model.predict_from_userid_api_v2(userid)

For example:

from avaxtar import Avaxtar

consumer_key = ''
consumer_secret = ''
access_token = ''
access_secret = ''
bearer_token = ''


if __name__ == "__main__":

	# Get the userid
	userid = ''

	# Predict
	model = Avaxtar.AvaxModel(consumer_key, consumer_secret, access_token, access_secret, bearer_token)
	pred_proba = model.predict_from_userid_api_v1(userid)

	# Results
	print(f'User: {userid}')
	print(f'Class Probabilities: {pred_proba}')

Package Details

The AVAXTAR classifier is trained on a comprehensive labeled dataset that contains historical tweets of approximately 130K Twitter accounts. Each account from the dataset was assigned one out of two labels: positive for the accounts that actively spread anti-vaccination narrative \~70K and negative for the accounts that do not spread anti vaccination narrative \~60K.

Collecting positive samples: Positive samples are gathered through a snowball method to identify a set of hashtags and keywords associated with the anti-vaccination movement, and then queried the Twitter API and collected the historical tweets of accounts that used any of the identified keywords.

Collecting negative samples: To collect the negative samples, we first performed a mirror approach the positive samples and queried the Twitter API to get historical tweets of accounts that do not use any of the predefined keywords and hashtags. We then enlarge the number of negative samples, by gathering the tweets from accounts that are likely proponents of the vaccination. We identify the pro-ponents of the vaccines in the following way: First, we identify the set of twenty most prominent doctors and health experts active on Twitter. Then collected the covid-related Lists those health experts made on Twitter. From those lists, we collected approximately one thousand Twitter handles of prominent experts and doctors who tweet about the coronavirus and the pandemic. In the next step, we go through their latest 200 tweets and collected the Twitter handles of users who retweeted their tweets. That became our pool of pro-vaccine users. Finally, we collected the historical tweets of users from the pro-vaccine pool.

After model training, we identify the optimal classification threshold to be used, based on maximizing F1 score on the validation set. We find that a threshold of 0.5938 results in the best F1 Score, and thus recommend the usage of that threshold instead of the default threshold of 0.5. Using the optimized threshold, the resulting modelwas then evaluated on a test set of users, achieving the reasonable scores, as shown in the table below.

Metric Negative Class Positive Class
Accuracy 0.8680 0.8680
ROC-AUC 0.9270 0.9270
PRC-AUC 0.8427 0.9677
Precision 0.8675 0.8675
Recall 0.8680 0.8680
F1 0.8677 0.8678
Text Extraction Formulation + Feedback Loop for state-of-the-art WSD (EMNLP 2021)

ConSeC is a novel approach to Word Sense Disambiguation (WSD), accepted at EMNLP 2021. It frames WSD as a text extraction task and features a feedback loop strategy that allows the disambiguation of

Sapienza NLP group 36 Dec 13, 2022
Performant, differentiable reinforcement learning

deluca Performant, differentiable reinforcement learning Notes This is pre-alpha software and is undergoing a number of core changes. Updates to follo

Google 114 Dec 27, 2022
A PyTorch Implementation of the Luna: Linear Unified Nested Attention

Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at

Soohwan Kim 32 Nov 07, 2022
KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

86 Dec 12, 2022
A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).

APPNP ⠀ A PyTorch implementation of Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019). Abstract Neural message pass

Benedek Rozemberczki 329 Dec 30, 2022
Cockpit is a visual and statistical debugger specifically designed for deep learning.

Cockpit: A Practical Debugging Tool for Training Deep Neural Networks

Felix Dangel 421 Dec 29, 2022
Powerful unsupervised domain adaptation method for dense retrieval.

Powerful unsupervised domain adaptation method for dense retrieval

Ubiquitous Knowledge Processing Lab 191 Dec 28, 2022
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code

Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas

17 Dec 19, 2022
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
Unofficial implementation of PatchCore anomaly detection

PatchCore anomaly detection Unofficial implementation of PatchCore(new SOTA) anomaly detection model Original Paper : Towards Total Recall in Industri

Changwoo Ha 268 Dec 22, 2022
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

33 Mar 23, 2022
hipCaffe: the HIP port of Caffe

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Cent

ROCm Software Platform 126 Dec 05, 2022
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 114 Jan 06, 2023
A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon.

PokeGAN A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon. Dataset The model has been trained on dataset that includes 8

19 Jul 26, 2022
Get the partition that a file belongs and the percentage of space that consumes

tinos_eisai_sy Get the partition that a file belongs and the percentage of space that consumes (works only with OSes that use the df command) tinos_ei

Konstantinos Patronas 6 Jan 24, 2022
Repository for XLM-T, a framework for evaluating multilingual language models on Twitter data

This is the XLM-T repository, which includes data, code and pre-trained multilingual language models for Twitter. XLM-T - A Multilingual Language Mode

Cardiff NLP 112 Dec 27, 2022