Happywhale - Whale and Dolphin Identification Silver🥈 Solution (26/1588)

Overview

Kaggle-Happywhale

Happywhale - Whale and Dolphin Identification Silver 🥈 Solution (26/1588)

竞赛方案思路

  1. 图像数据预处理-标志性特征图片裁剪:首先根据开源的标注数据训练YOLOv5x6目标检测模型,将训练集与测试集数据裁剪出背鳍或者身体部分;
  2. 背鳍图片特征提取模型:将训练集数据划分为训练与验证两部分,训练 EfficientNet_B6 / EfficientNet_V2_L / NFNet_L2 (backone)三个模型,并且都加上了GeM Pooling 和 Arcface 损失函数,有效增强类内紧凑度和类间分离度;
  3. 聚类与排序:利用最终训练完成的backone模型分别提取训练集与测试集的嵌入特征,所有模型都会输出一个512维的Embedding,将这些特征 concatenated 后获得了一个 512×9=4608 维的特征向量,将训练集的嵌入特征融合后训练KNN模型,然后推断测试集嵌入特征距离,排序获取top5类别,作为预测结果,最后使用new_individual替换进行后处理,得到了top2%的成绩。

Model

class HappyWhaleModel(nn.Module):
    def __init__(self, model_name, embedding_size, pretrained=True):
        super(HappyWhaleModel, self).__init__()
        self.model = timm.create_model(model_name, pretrained=pretrained) 

        if 'efficientnet' in model_name:
            in_features = self.model.classifier.in_features
            self.model.classifier = nn.Identity()
            self.model.global_pool = nn.Identity()
        elif 'nfnet' in model_name:
            in_features = self.model.head.fc.in_features
            self.model.head.fc = nn.Identity()
            self.model.head.global_pool = nn.Identity()

        self.pooling = GeM() 
        self.embedding = nn.Sequential(
                            nn.BatchNorm1d(in_features),
                            nn.Linear(in_features, embedding_size)
                            )
        # arcface
        self.fc = ArcMarginProduct(embedding_size,
                                   CONFIG["num_classes"], 
                                   s=CONFIG["s"],
                                   m=CONFIG["m"], 
                                   easy_margin=CONFIG["easy_margin"], 
                                   ls_eps=CONFIG["ls_eps"]) 

    def forward(self, images, labels):
        features = self.model(images)  
        pooled_features = self.pooling(features).flatten(1)
        embedding = self.embedding(pooled_features) # embedding
        output = self.fc(embedding, labels) # arcface
        return output
    
    def extract(self, images):
        features = self.model(images) 
        pooled_features = self.pooling(features).flatten(1)
        embedding = self.embedding(pooled_features) # embedding
        return embedding

ArcFace

# Arcface
class ArcMarginProduct(nn.Module):
    r"""Implement of large margin arc distance: :
        Args:
            in_features: size of each input sample
            out_features: size of each output sample
            s: norm of input feature
            m: margin
            cos(theta + m)
        """
    def __init__(self, in_features, out_features, s=30.0, 
                 m=0.50, easy_margin=False, ls_eps=0.0):
        super(ArcMarginProduct, self).__init__()
        self.in_features = in_features 
        self.out_features = out_features 
        self.s = s
        self.m = m 
        self.ls_eps = ls_eps 
        self.weight = nn.Parameter(torch.FloatTensor(out_features, in_features))
        nn.init.xavier_uniform_(self.weight)

        self.easy_margin = easy_margin
        self.cos_m = math.cos(m) # cos margin
        self.sin_m = math.sin(m) # sin margin
        self.threshold = math.cos(math.pi - m) # cos(pi - m) = -cos(m)
        self.mm = math.sin(math.pi - m) * m # sin(pi - m)*m = sin(m)*m

    def forward(self, input, label):
        # --------------------------- cos(theta) & phi(theta) ---------------------
        cosine = F.linear(F.normalize(input), F.normalize(self.weight)) 
        sine = torch.sqrt(1.0 - torch.pow(cosine, 2)) 
        phi = cosine * self.cos_m - sine * self.sin_m # cosθ*cosm – sinθ*sinm = cos(θ + m)
        phi = phi.float() # phi to float
        cosine = cosine.float() # cosine to float
        if self.easy_margin:
            phi = torch.where(cosine > 0, phi, cosine)
        else:
            # if cos(θ) > cos(pi - m) means θ + m < math.pi, so phi = cos(θ + m);
            # else means θ + m >= math.pi, we use Talyer extension to approximate the cos(θ + m).
            # if fact, cos(θ + m) = cos(θ) - m * sin(θ) >= cos(θ) - m * sin(math.pi - m)
            phi = torch.where(cosine > self.threshold, phi, cosine - self.mm)
            
        # https://github.com/ronghuaiyang/arcface-pytorch/issues/48
        # --------------------------- convert label to one-hot ---------------------
        # one_hot = torch.zeros(cosine.size(), requires_grad=True, device='cuda')
        one_hot = torch.zeros(cosine.size(), device=CONFIG['device'])
        one_hot.scatter_(1, label.view(-1, 1).long(), 1)
        # label smoothing
        if self.ls_eps > 0:
            one_hot = (1 - self.ls_eps) * one_hot + self.ls_eps / self.out_features
        # -------------torch.where(out_i = {x_i if condition_i else y_i) ------------
        output = (one_hot * phi) + ((1.0 - one_hot) * cosine)  
        output *= self.s

        return output

冲榜历程

  1. 使用Yolov5切分 fullbody数据 和 backfins数据;
  2. 使用小模型tf_efficientnet_b0_ns + ArcFace 作为 Baseline,训练fullbody 512size, 使用kNN 搜寻,搭建初步的pipeline,Public LB : 0.729;
  3. 加入new_individual后处理,Public LB : 0.742;
  4. 使用fullbody 768size图像,并调整了数据增强, Public LB : 0.770;
  5. 训练 tf_efficientnet_b6_ns ,以及上述所有功能微调,Public LB:0.832;
  6. 训练 tf_efficientnetv2_l_in21k,以及上述所有功能微调,Public LB:0.843;
  7. 训练 eca_nfnet_l2,以及上述所有功能微调,Public LB:0.854;
  8. 将上述三个模型的5Fold,挑选cv高的,进行融合,Public LB:0.858;

代码、数据集

  • 代码

    • Happywhale_crop_image.ipynb # 裁切fullbody数据和backfin数据
    • Happywhale_train.ipynb # 训练代码 (最低要求GPU显存不小于12G)
    • Happywhale_infernce.ipynb # 推理代码以及kNN计算和后处理
  • 数据集

写在后面

感谢我的队友徐哥和他的3090们 🤣

Owner
Franxx
Franxx
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
An AFL implementation with UnTracer (our coverage-guided tracer)

UnTracer-AFL This repository contains an implementation of our prototype coverage-guided tracing framework UnTracer in the popular coverage-guided fuz

113 Dec 17, 2022
SMPL-X: A new joint 3D model of the human body, face and hands together

SMPL-X: A new joint 3D model of the human body, face and hands together [Paper Page] [Paper] [Supp. Mat.] Table of Contents License Description News I

Vassilis Choutas 1k Jan 09, 2023
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFlow 2

DreamerPro Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFl

22 Nov 01, 2022
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking

StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr

25 May 29, 2022
Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit

streamlit-manim Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit Installation I had to install pango with sudo apt-get

Adrien Treuille 6 Aug 03, 2022
SLAMP: Stochastic Latent Appearance and Motion Prediction

SLAMP: Stochastic Latent Appearance and Motion Prediction Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Predicti

Kaan Akan 34 Dec 08, 2022
Meta graph convolutional neural network-assisted resilient swarm communications

Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat

62 Dec 06, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Code for the upcoming CVPR 2021 paper

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael

Niantic Labs 496 Dec 30, 2022
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
Source code for ZePHyR: Zero-shot Pose Hypothesis Rating @ ICRA 2021

ZePHyR: Zero-shot Pose Hypothesis Rating ZePHyR is a zero-shot 6D object pose estimation pipeline. The core is a learned scoring function that compare

R-Pad - Robots Perceiving and Doing 18 Aug 22, 2022
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
Only a Matter of Style: Age Transformation Using a Style-Based Regression Model

Only a Matter of Style: Age Transformation Using a Style-Based Regression Model The task of age transformation illustrates the change of an individual

444 Dec 30, 2022
Distance Encoding for GNN Design

Distance-encoding for GNN design This repository is the official PyTorch implementation of the DEGNN and DEAGNN framework reported in the paper: Dista

172 Nov 08, 2022
A deep learning framework for historical document image analysis

DIVA-DAF Description A deep learning framework for historical document image analysis. How to run Install dependencies # clone project git clone https

9 Aug 04, 2022
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022