The code release of paper Low-Light Image Enhancement with Normalizing Flow

Related tags

Deep LearningLLFlow
Overview

PWC

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow

Paper | Project Page

Low-Light Image Enhancement with Normalizing Flow
Yufei Wang, Renjie Wan, Wenhan Yang, Haoliang Li, Lap-pui Chau, Alex C. Kot
In AAAI'2022

Overall

Framework

Quantitative results

Evaluation on LOL

The evauluation results on LOL are as follows

Method PSNR SSIM LPIPS
LIME 16.76 0.56 0.35
RetinexNet 16.77 0.56 0.47
DRBN 20.13 0.83 0.16
Kind 20.87 0.80 0.17
KinD++ 21.30 0.82 0.16
LLFlow (Ours) 25.19 0.93 0.11

Computational Cost

Computational Cost The computational cost and performance of models are in the above table. We evaluate the cost using one image with a size 400×600. Ours(large) is the standard model reported in supplementary and Ours(small) is a model with reduced parameters. Both the training config files and pre-trained models are provided.

Visual Results

Visual comparison with state-of-the-art low-light image enhancement methods on LOL dataset.

Get Started

Dependencies and Installation

  • Python 3.8
  • Pytorch 1.9
  1. Clone Repo
git clone https://github.com/wyf0912/LLFlow.git
  1. Create Conda Environment
conda create --name LLFlow python=3.8
conda activate LLFlow
  1. Install Dependencies
cd LLFlow
pip install -r requirements.txt

Pretrained Model

We provide the pre-trained models with the following settings:

  • A light weight model with promising performance trained on LOL [Google drive] with training config file ./confs/LOL_smallNet.yml
  • A standard-sized model trained on LOL [Google drive] with training config file ./confs/LOL-pc.yml.
  • A standard-sized model trained on VE-LOL [Google drive] with training config file ./confs/LOLv2-pc.yml.

Test

You can check the training log to obtain the performance of the model. You can also directly test the performance of the pre-trained model as follows

  1. Modify the paths to dataset and pre-trained mode. You need to modify the following path in the config files in ./confs
#### Test Settings
dataroot_GT # only needed for testing with paired data
dataroot_LR
model_path
  1. Test the model

To test the model with paired data and obtain the evaluation results, e.g., PSNR, SSIM, and LPIPS.

python test.py --opt your_config_path
# You need to specify an appropriate config file since it stores the config of the model, e.g., the number of layers.

To test the model with unpaired data

python test_unpaired.py --opt your_config_path
# You need to specify an appropriate config file since it stores the config of the model, e.g., the number of layers.

You can check the output in ../results.

Train

All logging files in the training process, e.g., log message, checkpoints, and snapshots, will be saved to ./experiments.

  1. Modify the paths to dataset in the config yaml files. We provide the following training configs for both LOL and VE-LOL benchmarks. You can also create your own configs for your own dataset.
.\confs\LOL_smallNet.yml
.\confs\LOL-pc.yml
.\confs\LOLv2-pc.yml

You need to modify the following terms

datasets.train.root
datasets.val.root
gpu_ids: [0] # Our model can be trained using a single GPU with memory>20GB. You can also train the model using multiple GPUs by adding more GPU ids in it.
  1. Train the network.
python train.py --opt your_config_path

Citation

If you find our work useful for your research, please cite our paper

@article{wang2021low,
  title={Low-Light Image Enhancement with Normalizing Flow},
  author={Wang, Yufei and Wan, Renjie and Yang, Wenhan and Li, Haoliang and Chau, Lap-Pui and Kot, Alex C},
  journal={arXiv preprint arXiv:2109.05923},
  year={2021}
}

Contact

If you have any question, please feel free to contact us via [email protected].

Owner
Yufei Wang
PhD student @ Nanyang Technological University
Yufei Wang
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since

Zhyever 37 Dec 01, 2022
[CVPR'21] Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild

IVOS-W Paper Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild Zhaoyun Yin, Jia Zheng, Weixin Luo, Shenhan Qian, Hanli

SVIP Lab 38 Dec 12, 2022
A framework for attentive explainable deep learning on tabular data

🧠 kendrite A framework for attentive explainable deep learning on tabular data 💨 Quick start kedro run 🧱 Built upon Technology Description Links ke

Marnix Koops 3 Nov 06, 2021
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022
[ICLR2021] Unlearnable Examples: Making Personal Data Unexploitable

Unlearnable Examples Code for ICLR2021 Spotlight Paper "Unlearnable Examples: Making Personal Data Unexploitable " by Hanxun Huang, Xingjun Ma, Sarah

Hanxun Huang 98 Dec 07, 2022
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Ramón Casero 1 Jan 07, 2022
A particular navigation route using satellite feed and can help in toll operations & traffic managemen

How about adding some info that can quanitfy the stress on a particular navigation route using satellite feed and can help in toll operations & traffic management The current analysis is on the satel

Ashish Pandey 1 Feb 14, 2022
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

ALgorithmic_Trading_with_ML An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and

1 Mar 14, 2022
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
Steer OpenAI's Jukebox with Music Taggers

TagBox Steer OpenAI's Jukebox with Music Taggers! The closest thing we have to VQGAN+CLIP for music! Unsupervised Source Separation By Steering Pretra

Ethan Manilow 34 Nov 02, 2022
PaddleBoBo是基于PaddlePaddle和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目

PaddleBoBo - 元宇宙时代,你也可以动手做一个虚拟主播。 PaddleBoBo是基于飞桨PaddlePaddle深度学习框架和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目。PaddleBoBo致力于简单高效、可复用性强,只需要一张带人像的图片和一段文字,就能

502 Jan 08, 2023
HGCAE Pytorch implementation. CVPR2021 accepted.

Hyperbolic Graph Convolutional Auto-Encoders Accepted to CVPR2021 🎉 Official PyTorch code of Unsupervised Hyperbolic Representation Learning via Mess

Junho Cho 37 Nov 13, 2022
ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis

ImageBART NeurIPS 2021 Patrick Esser*, Robin Rombach*, Andreas Blattmann*, Björn Ommer * equal contribution arXiv | BibTeX | Poster Requirements A sui

CompVis Heidelberg 110 Jan 01, 2023
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency[ECCV 2020]

Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency(ECCV 2020) This is an official python implementati

304 Jan 03, 2023
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Katsuya Hyodo 6 May 15, 2022