Ludwig Benchmarking Toolkit

Overview

Ludwig Benchmarking Toolkit

The Ludwig Benchmarking Toolkit is a personalized benchmarking toolkit for running end-to-end benchmark studies across an extensible set of tasks, deep learning models, standard datasets and evaluation metrics.

Getting set-up

To get started, use the following commands to set-up your conda environment.

git clone https://github.com/HazyResearch/ludwig-benchmarking-toolkit.git
cd ludwig-benchmarking-toolkit
conda env create -f environments/{environment-osx.yaml, environment-linux.yaml}
conda activate lbt

Relevant files and directories

experiment-templates/task_template.yaml: Every task (i.e. text classification) will have its owns task template. The template specifies the model architecture (encoder and decoder structure), training parameters, and a hyperopt configuration for the task at hand. A large majority of the values of the template will be populated by the values in the hyperopt_config.yaml file and dataset_metadata.yaml at training time. The sample task template located in experiment-templates/task_template.yaml is for text classification. See sample-task-templates/ for other examples.

experiment-templates/hyperopt_config.yaml: provides a range of values for training parameters and hyperopt params that will populate the hyperopt configuration in the model template

experiment-templates/dataset_metadata.yaml: contains list of all available datasets (and associated metadata) that the hyperparameter optimization can be performed over.

model-configs/: contains all encoder specific yaml files. Each files specifies possible values for relevant encoder parameters that will be optimized over. Each file in this directory adheres to the naming convention {encoder_name}_hyperopt.yaml

hyperopt-experiment-configs/: houses all experiment configs built from the templates specified above (note: this folder will be populated at run-time) and will be used when the hyperopt experiment is called. At a high level, each config file specifies the training and hyperopt information for a (task, dataset, architecture) combination. An example might be (text classification, SST2, BERT)

elasticsearch_config.yaml : this is an optional file that is to be defined if an experiment data will be saved to an elastic database.

USAGE

Command-Line Usage

Running your first TOY experiment:

For testing/setup purposes we have included a toy dataset called toy_agnews. This dataset contains a small set of training, test and validation samples from the original agnews dataset.

Before running a full-scale experiment, we recommend running an experiment locally on the toy dataset:

python experiment_driver.py --run_environment local --datasets toy_agnews --custom_models_list rnn

Running your first REAL experiment:

Steps for configuring + running an experiment:

  1. Declare and configure the search space of all non-model specific training and preprocessing hyperparameters in the experiment-templates/hyperopt_config.yaml file. The parameters specified in this file will be used across all model experiments.

  2. Declare and configure the search space of model specific hyperparameters in the {encoder}_hyperopt.yaml files in ./model_configs

    NOTE:

    • for both (1) and (2) see the Ludwig Hyperparamter Optimization guide to see what parameters for training, preprocessing, and input/ouput features can be used in the hyperopt search
    • if the exectuor type is Ray the list of available search spaces and input format differs slightly than the built-in ludwig types. Please see the Ray Tune search space docs for more information.
  3. Run the following command specifying the datasets, encoders, path to elastic DB index config file, run environment and more:

        python experiment_driver.py \
            --experiment_output_dir  
         
          
            --run_environment {local, gcp}
            --elasticsearch_config 
          
           
            --dataset_cache_dir 
           
            
            --custom_model_list 
            
             
            --datasets 
             
               --resume_existing_exp bool 
             
            
           
          
         

NOTE: Please use python experiment_driver.py -h to see list of available datasets, encoders and args

API Usage

It is also possible to run, customize and experiments using LBTs APIs. In the following section, we describe the three flavors of APIs included in LBT.

experiment API

This API provides an alternative method for running experiments. Note that runnin experiments via the API still requires populating the aforemented configuration files

from lbt.experiments import experiment

experiment(
    models = ['rnn', 'bert'],
    datasets = ['agnews'],
    run_environment = "local",
    elastic_search_config = None,
    resume_existing_exp = False,
)

tools API

This API provides access to two tooling integrations (TextAttack and Robustness Gym (RG)). The TextAttack API can be used to generate adversarial attacks. Moreover, users can use the TextAttack interface to augment data files. The RG API which empowers users to inspect model performance on a set of generic, pre-built slices and to add more slices for their specific datasets and use cases.

from lbt.tools.robustnessgym import RG 
from lbt.tools.textattack import attack, augment

# Robustness Gym API Usage
RG( dataset_name="AGNews",
    models=["bert", "rnn"],
    path_to_dataset="agnews.csv", 
    subpopulations=[ "entities", "positive_words", "negative_words"]))

# TextAttack API Usage
attack(dataset_name="AGNews", path_to_model="agnews/model/rnn_model",
    path_to_dataset="agnews.csv", attack_recipe=["CharSwapAugmenter"])

augment(dataset_name="AGNews", transformations_per_example=1
   path_to_dataset="agnews.csv", augmenter=["WordNetAugmenter"])

visualizations API

This API provides out-of-the-box support for visualizations for learning behavior, model performance, and hyperparameter optimization using the training and evaluation statistics generated during model training

import lbt.visualizations

# compare model performance
compare_performance_viz(
    dataset_name="toy_agnews",
    model_name="rnn",
    output_feature_name="class_index",
)

# compare training and validation trajectory
learning_curves_viz(
    dataset_name="toy_agnews",
    model_name="rnn",
    output_feature_name="class_index",
)

# visualize hyperoptimzation search
hyperopt_viz(
    dataset_name="toy_agnews",
    model_name="rnn",
    output_dir="."
)

EXPERIMENT EXTENSIBILITY

Adding new custom datasets

Adding custom dataset requires creating a new LBTDataset class and adding it to the dataset registry. Creating an LBTDataset object requires implementing three class methods: download, process and load. Please see the the ToyAGNews dataset as an example.

Adding new metrics

Adding custom evaluation metrics requires creating a new LBTMetric class and adding it to the metrics registry. Creating an LBTMetric object requires implementing the run class method which takes as potential inputs a path to a model directory, path to a dataset, training batch size, and training statistics. Please see the pre-built LBT metrics for examples.

ELASTICSEARCH RESEARCH DATABASE

To get credentials to upload experiments to the shared Elasticsearch research database, please fill out this form.

Owner
HazyResearch
We are a CS research group led by Prof. Chris Ré.
HazyResearch
A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items This repository co

Taimur Hassan 3 Mar 16, 2022
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on

Weijie Liu 584 Jan 02, 2023
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Clova AI Research 256 Jan 05, 2023
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
Python-experiments - A Repository which contains python scripts to automate things and make your life easier with python

Python Experiments A Repository which contains python scripts to automate things

Vivek Kumar Singh 11 Sep 25, 2022
PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

MoCo v3 for Self-supervised ResNet and ViT Introduction This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT. The original M

Facebook Research 887 Jan 08, 2023
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
A PyTorch-based Semi-Supervised Learning (SSL) Codebase for Pixel-wise (Pixel) Vision Tasks

PixelSSL is a PyTorch-based semi-supervised learning (SSL) codebase for pixel-wise (Pixel) vision tasks. The purpose of this project is to promote the

Zhanghan Ke 255 Dec 11, 2022
Code for MSc Quantitative Finance Dissertation

MSc Dissertation Code ReadMe Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks Curtis Nybo MSc Quantitative F

2 Dec 01, 2022
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

ShapeInversion Paper Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D

100 Dec 22, 2022
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022
NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys in IEEE Transactions o

D-X-Y 137 Dec 20, 2022
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022