Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Overview

Face2webtoon

merge_from_ofoct (2)

merge_from_ofoct (1)

Introduction

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

Webtoon Dataset

data

I used anime face detector. Since face detector is not that good at detecting the faces from webtoon, I could gather only 1400 webtoon face images.

Baseline 0(U-GAT-IT)

I used U-GAT-IT official pytorch implementation. U-GAT-IT is GAN for unpaired image to image translation. By using CAM attention module and adaptive layer instance normalization, it performed well on image translation where considerable shape deformation is required, on various hyperparameter settings. Since shape is very different between two domain, I used this model.

For face data, i used AFAD-Lite dataset from https://github.com/afad-dataset/tarball-lite.

good

gif1

Some results look pretty nice, but many result have lost attributes while transfering.

Missing of Attributes

Gender

gender

Gender information was lost.

Glasses

glasses

A model failed to generate glasses in the webtoon faces.

Result Analysis

To analysis the result, I seperated webtoon dataset to 5 different groups.

group number group name number of data
0 woman_no_glasses 1050
1 man_no_glasses 249
2 man_glasses 17->49
3 woman_glasses 15->38

Even after I collected more data for group 2 and 3, there are severe imbalances between groups. As a result, model failed to translate to few shot groups, for example, group 2 and 3.

U-GAT-IT + Few Shot Transfer

Few shot transfer : https://arxiv.org/abs/2007.13332

Paper review : https://yun905.tistory.com/48

In this paper, authors successfully transfered the knowledge from group with enough data to few shot groups which have only 10~15 data. First, they trained basic model, and made branches for few shot groups.

Basic model

For basic model, I trained U-GAT-IT between only group 0.

basic_model1 basic_model2

Baseline 1 (simple fine-tuning)

For baseline 1, I freeze the bottleneck layers of generator and tried to fine-tune the basic model. I used 38 images(both real/fake) of group 1,2,3, and added 8 images of group 0 to prevent forgetting. I trained for 200k iterations.

1

Model randomly mapped between groups.

Baseline 2 (group classification loss + selective backprop)

0

I attached additional group classifier to discriminator and added group classification loss according to original paper. Images of group 0,1,2,3 were feeded sequentially, and bottleneck layers of generator were updated for group 0 only.

With limited data, bias of FID score is too big. Instead, I used KID

KID*1000
25.95

U-GAT-IT + group classification loss + adaptive discriminator augmentation

ADA is very useful data augmentation method for training GAN with limited data. Although original paper only handles unconditional GANs, I applied ADA to U-GAT-IT which is conditional GAN. Augmentation was applied to both discriminators, because it is expected that preventing the discriminator of the face domain from overfitting would improve the performance of the face generator and therefore the cycle consistency loss would be more meaningful. Only pixel blitting and geometric transformation have been implemented, as the effects of other augmentation methods are minimal according to paper. The rest will be implemented later.

To achieve better result, I changed face dataset to more diverse one(CelebA).

merge_from_ofoct (2)

merge_from_ofoct (1)

image

ADA makes training longer. It took 8 days with single 2070 SUPER, but did not converged completely.

KID*1000
12.14

Start training

python main.py --dataset dataset_name --useADA True --group 0,1,2,3 --use_grouploss True --neptune False

If --neptune is True, the experiment is transmitted to neptune ai, which is experiment management tool. You must set your API token. --group 0,1,3 make group 2 out of training.

Owner
이상윤
이상윤
Code repository for "Stable View Synthesis".

Stable View Synthesis Code repository for "Stable View Synthesis". Setup Install the following Python packages in your Python environment - numpy (1.1

Intelligent Systems Lab Org 195 Dec 24, 2022
Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation

Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation Introduction WAKD is a PyTorch implementation for our ICPR-2022 pap

2 Oct 20, 2022
A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

OpenAI 29.6k Jan 08, 2023
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
Adversarial Learning for Modeling Human Motion

Adversarial Learning for Modeling Human Motion This repository contains the open source code which reproduces the results for the paper: Adversarial l

wangqi 6 Jun 15, 2021
🛠️ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

SLAMcore 7 Aug 04, 2022
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text"

Iconary This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text". It includes the

AI2 6 May 24, 2022
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
This is the official implementation of Elaborative Rehearsal for Zero-shot Action Recognition (ICCV2021)

Elaborative Rehearsal for Zero-shot Action Recognition This is an official implementation of: Shizhe Chen and Dong Huang, Elaborative Rehearsal for Ze

DeLightCMU 26 Sep 24, 2022
A computational block to solve entity alignment over textual attributes in a knowledge graph creation pipeline.

How to apply? Create your config.ini file following the example provided in config.ini Choose one of the options below to run: Run with Python3 pip in

Scientific Data Management Group 3 Jun 23, 2022
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
Learning to Prompt for Vision-Language Models.

CoOp Paper: Learning to Prompt for Vision-Language Models Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu CoOp (Context Optimization)

Kaiyang 679 Jan 04, 2023
Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
StackNet is a computational, scalable and analytical Meta modelling framework

StackNet This repository contains StackNet Meta modelling methodology (and software) which is part of my work as a PhD Student in the computer science

Marios Michailidis 1.3k Dec 15, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022