虚拟货币(BTC、ETH)炒币量化系统项目。在一版本的基础上加入了趋势判断

Overview

🎉 第二版本 🎉 (现货趋势网格)


介绍

在第一版本的基础上

趋势判断,不在固定点位开单,选择更优的开仓点位

优势: 🎉

  1. 简单易上手
  2. 安全(不用将api_secret告诉他人)

如何启动

  1. 修改app目录下的authorization文件
api_key='你的key'
api_secret='你的secret'

dingding_token = '申请钉钉群助手的token'   # 强烈建议您使用 (若不会申请,请加我个人微信)

如果你还没有币安账号: 注册页面交易返佣40%(系统返佣20%,id私发给我,微信每周返佣20%,长期有效)

免翻墙地址

申请api_key地址: 币安API管理页面

  1. 修改data/data.json配置文件 根据
{
    "runBet": {
        "next_buy_price": 350,      <- 下次开仓价   (你下一仓位买入价)
      
        "grid_sell_price": 375      <- 当前止盈价  (你的当前仓位卖出价)
        "step":0                    <- 当前仓位  (0:仓位为空)
    },
    "config": {
        "profit_ratio": 5,         <- 止盈比率      (卖出价调整比率。如:设置为5,当前买入价为100,那么下次卖出价为105)
        "double_throw_ratio": 5,   <- 补仓比率      (买入价调整比率。如:设置为5,当前买入价为100,那么下次买入价为95)
        "cointype": "ETHUSDT",     <- 交易对        (你要进行交易的交易对,请参考币安现货。如:BTC 填入 BTC/USDT)
        "quantity": [1,2,3]        <- 交易数量       (第一手买入1,第二手买入2...超过第三手以后的仓位均按照最后一位数量(3)买入)
        
    }
}

  1. 安装依赖包 ''' pip install requests json '''
  2. 运行主文件
# python eth-run.py 这是带有钉钉通知的主文件(推荐使用钉钉模式启动👍)

注意事项(一定要看)

  • 由于交易所的api在大陆无法访问(如果没有条件,可以使用api.binance.cc)
    • 您需要选择修改binanceAPI.py文件
# 修改为cc域名
class BinanceAPI(object):
    BASE_URL = "https://www.binance.cc/api/v1"
    FUTURE_URL = "https://fapi.binance.cc"
    BASE_URL_V3 = "https://api.binance.cc/api/v3"
    PUBLIC_URL = "https://www.binance.cc/exchange/public/product"
  • 如果您使用的交易所为币安,那么请保证账户里有足够的bnb

    • 手续费足够低
    • 确保购买的币种完整(如果没有bnb,比如购买1个eth,其中你只会得到0.999。其中0.001作为手续费支付了)
  • 第一版本现货账户保证有足够的U

  • 由于补仓比率是动态的,目前默认最小为5%。如果您认为过大,建议您修改文件夹data下的RunbetData.py文件

    def set_ratio(self,symbol):
        '''修改补仓止盈比率'''
        data_json = self._get_json_data()
        ratio_24hr = binan.get_ticker_24hour(symbol) #
        index = abs(ratio_24hr)

        if abs(ratio_24hr) >  **6** : # 今日24小时波动比率
            if ratio_24hr > 0 : # 单边上涨,补仓比率不变
                data_json['config']['profit_ratio'] =  **7** + self.get_step()/4  #
                data_json['config']['double_throw_ratio'] = **5**
            else: # 单边下跌
                data_json['config']['double_throw_ratio'] =  **7** + self.get_step()/4
                data_json['config']['profit_ratio'] =  **5**

        else: # 系数内震荡行情

            data_json['config']['double_throw_ratio'] = **5** + self.get_step() / 4
            data_json['config']['profit_ratio'] = **5** + self.get_step() / 4
        self._modify_json_data(data_json)

钉钉预警

如果您想使用钉钉通知,那么你需要创建一个钉钉群,然后加入自定义机器人。最后将机器人的token粘贴到authorization文件中的dingding_token 关键词输入:报警

钉钉通知交易截图

钉钉交易信息

25日实战收益

收益图

私人微信:欢迎志同道合的朋友一同探讨,一起进步。

交流群 wechat-QRcode 币圈快讯爬取群 wx号:findpanpan 麻烦备注来自github

钉钉设置教程

钉钉设置教程

免责申明

本项目不构成投资建议,投资者应独立决策并自行承担风险 币圈有风险,入圈须谨慎。

?? 风险提示:防范以“虚拟货币”“区块链”名义进行非法集资的风险。

Owner
幸福村的码农
努力中...
幸福村的码农
Reggy - Regressions with arbitrarily complex regularization terms

reggy Regressions with arbitrarily complex regularization terms. Currently suppo

Kim 1 Jan 20, 2022
Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Paul 3 Dec 06, 2022
Solve automatic numerical differentiation problems in one or more variables.

numdifftools The numdifftools library is a suite of tools written in _Python to solve automatic numerical differentiation problems in one or more vari

Per A. Brodtkorb 181 Dec 16, 2022
LightGBM + Optuna: no brainer

AutoLGBM LightGBM + Optuna: no brainer auto train lightgbm directly from CSV files auto tune lightgbm using optuna auto serve best lightgbm model usin

Rishiraj Acharya 22 Dec 15, 2022
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster

[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm

Daniel Han-Chen 1.4k Jan 01, 2023
A collection of machine learning examples and tutorials.

machine_learning_examples A collection of machine learning examples and tutorials.

LazyProgrammer.me 7.1k Jan 01, 2023
ML Kaggle Titanic Problem using LogisticRegrission

-ML-Kaggle-Titanic-Problem-using-LogisticRegrission here you will find the solution for the titanic problem on kaggle with comments and step by step c

Mahmoud Nasser Abdulhamed 3 Oct 23, 2022
This is my implementation on the K-nearest neighbors algorithm from scratch using Python

K Nearest Neighbors (KNN) algorithm In this Machine Learning world, there are various algorithms designed for classification problems such as Logistic

sonny1902 1 Jan 08, 2022
Machine-learning-dell - Repositório com as atividades desenvolvidas no curso de Machine Learning

📚 Descrição Neste curso da Dell aprofundamos nossos conhecimentos em Machine Learning. 🖥️ Aulas (Em curso) 1.1 - Python aplicado a Data Science 1.2

Claudia dos Anjos 1 Jan 05, 2022
A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.

Machine Learning Notebooks, 3rd edition This project aims at teaching you the fundamentals of Machine Learning in python. It contains the example code

Aurélien Geron 1.6k Jan 05, 2023
Python Automated Machine Learning library for tabular data.

Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Scie

Daniel Khromov 47 Dec 17, 2022
MLOps pipeline project using Amazon SageMaker Pipelines

This project shows steps to build an end to end MLOps architecture that covers data prep, model training, realtime and batch inference, build model registry, track lineage of artifacts and model drif

AWS Samples 3 Sep 16, 2022
Open MLOps - A Production-focused Open-Source Machine Learning Framework

Open MLOps - A Production-focused Open-Source Machine Learning Framework Open MLOps is a set of open-source tools carefully chosen to ease user experi

Data Revenue 590 Dec 28, 2022
Python based GBDT implementation

Py-boost: a research tool for exploring GBDTs Modern gradient boosting toolkits are very complex and are written in low-level programming languages. A

Sberbank AI Lab 20 Sep 21, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Jan 03, 2023
A Python toolbox to churn out organic alkalinity calculations with minimal brain engagement.

Organic Alkalinity Sausage Machine A Python toolbox to churn out organic alkalinity calculations with minimal brain engagement. Getting started To mak

Charles Turner 1 Feb 01, 2022
A repository to index and organize the latest machine learning courses found on YouTube.

📺 ML YouTube Courses At DAIR.AI we ❤️ open education. We are excited to share some of the best and most recent machine learning courses available on

DAIR.AI 9.6k Jan 01, 2023
Test symmetries with sklearn decision tree models

Test symmetries with sklearn decision tree models Setup Begin from an environment with a recent version of python 3. source setup.sh Leave the enviro

Rupert Tombs 2 Jul 19, 2022
Uber Open Source 1.6k Dec 31, 2022
A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search

A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search

Nicholas Monath 31 Nov 03, 2022