虚拟货币(BTC、ETH)炒币量化系统项目。在一版本的基础上加入了趋势判断

Overview

🎉 第二版本 🎉 (现货趋势网格)


介绍

在第一版本的基础上

趋势判断,不在固定点位开单,选择更优的开仓点位

优势: 🎉

  1. 简单易上手
  2. 安全(不用将api_secret告诉他人)

如何启动

  1. 修改app目录下的authorization文件
api_key='你的key'
api_secret='你的secret'

dingding_token = '申请钉钉群助手的token'   # 强烈建议您使用 (若不会申请,请加我个人微信)

如果你还没有币安账号: 注册页面交易返佣40%(系统返佣20%,id私发给我,微信每周返佣20%,长期有效)

免翻墙地址

申请api_key地址: 币安API管理页面

  1. 修改data/data.json配置文件 根据
{
    "runBet": {
        "next_buy_price": 350,      <- 下次开仓价   (你下一仓位买入价)
      
        "grid_sell_price": 375      <- 当前止盈价  (你的当前仓位卖出价)
        "step":0                    <- 当前仓位  (0:仓位为空)
    },
    "config": {
        "profit_ratio": 5,         <- 止盈比率      (卖出价调整比率。如:设置为5,当前买入价为100,那么下次卖出价为105)
        "double_throw_ratio": 5,   <- 补仓比率      (买入价调整比率。如:设置为5,当前买入价为100,那么下次买入价为95)
        "cointype": "ETHUSDT",     <- 交易对        (你要进行交易的交易对,请参考币安现货。如:BTC 填入 BTC/USDT)
        "quantity": [1,2,3]        <- 交易数量       (第一手买入1,第二手买入2...超过第三手以后的仓位均按照最后一位数量(3)买入)
        
    }
}

  1. 安装依赖包 ''' pip install requests json '''
  2. 运行主文件
# python eth-run.py 这是带有钉钉通知的主文件(推荐使用钉钉模式启动👍)

注意事项(一定要看)

  • 由于交易所的api在大陆无法访问(如果没有条件,可以使用api.binance.cc)
    • 您需要选择修改binanceAPI.py文件
# 修改为cc域名
class BinanceAPI(object):
    BASE_URL = "https://www.binance.cc/api/v1"
    FUTURE_URL = "https://fapi.binance.cc"
    BASE_URL_V3 = "https://api.binance.cc/api/v3"
    PUBLIC_URL = "https://www.binance.cc/exchange/public/product"
  • 如果您使用的交易所为币安,那么请保证账户里有足够的bnb

    • 手续费足够低
    • 确保购买的币种完整(如果没有bnb,比如购买1个eth,其中你只会得到0.999。其中0.001作为手续费支付了)
  • 第一版本现货账户保证有足够的U

  • 由于补仓比率是动态的,目前默认最小为5%。如果您认为过大,建议您修改文件夹data下的RunbetData.py文件

    def set_ratio(self,symbol):
        '''修改补仓止盈比率'''
        data_json = self._get_json_data()
        ratio_24hr = binan.get_ticker_24hour(symbol) #
        index = abs(ratio_24hr)

        if abs(ratio_24hr) >  **6** : # 今日24小时波动比率
            if ratio_24hr > 0 : # 单边上涨,补仓比率不变
                data_json['config']['profit_ratio'] =  **7** + self.get_step()/4  #
                data_json['config']['double_throw_ratio'] = **5**
            else: # 单边下跌
                data_json['config']['double_throw_ratio'] =  **7** + self.get_step()/4
                data_json['config']['profit_ratio'] =  **5**

        else: # 系数内震荡行情

            data_json['config']['double_throw_ratio'] = **5** + self.get_step() / 4
            data_json['config']['profit_ratio'] = **5** + self.get_step() / 4
        self._modify_json_data(data_json)

钉钉预警

如果您想使用钉钉通知,那么你需要创建一个钉钉群,然后加入自定义机器人。最后将机器人的token粘贴到authorization文件中的dingding_token 关键词输入:报警

钉钉通知交易截图

钉钉交易信息

25日实战收益

收益图

私人微信:欢迎志同道合的朋友一同探讨,一起进步。

交流群 wechat-QRcode 币圈快讯爬取群 wx号:findpanpan 麻烦备注来自github

钉钉设置教程

钉钉设置教程

免责申明

本项目不构成投资建议,投资者应独立决策并自行承担风险 币圈有风险,入圈须谨慎。

?? 风险提示:防范以“虚拟货币”“区块链”名义进行非法集资的风险。

Owner
幸福村的码农
努力中...
幸福村的码农
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021
A project based example of Data pipelines, ML workflow management, API endpoints and Monitoring.

MLOps template with examples for Data pipelines, ML workflow management, API development and Monitoring.

Utsav 33 Dec 03, 2022
BASTA: The BAyesian STellar Algorithm

BASTA: BAyesian STellar Algorithm Current stable version: v1.0 Important note: BASTA is developed for Python 3.8, but Python 3.7 should work as well.

BASTA team 16 Nov 15, 2022
A linear regression model for house price prediction

Linear_Regression_Model A linear regression model for house price prediction. This code is using these packages, so please make sure your have install

ShawnWang 1 Nov 29, 2021
DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning.

DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning. DirectML provides GPU acceleration for common machine learning tasks across a broad range of supported ha

Microsoft 1.1k Jan 04, 2023
A Python implementation of FastDTW

fastdtw Python implementation of FastDTW [1], which is an approximate Dynamic Time Warping (DTW) algorithm that provides optimal or near-optimal align

tanitter 651 Jan 04, 2023
A benchmark of data-centric tasks from across the machine learning lifecycle.

A benchmark of data-centric tasks from across the machine learning lifecycle.

61 Dec 28, 2022
jaxfg - Factor graph-based nonlinear optimization library for JAX.

Factor graphs + nonlinear optimization in JAX

Brent Yi 134 Dec 21, 2022
hgboost - Hyperoptimized Gradient Boosting

hgboost is short for Hyperoptimized Gradient Boosting and is a python package for hyperparameter optimization for xgboost, catboost and lightboost using cross-validation, and evaluating the results o

Erdogan Taskesen 34 Jan 03, 2023
Nevergrad - A gradient-free optimization platform

Nevergrad - A gradient-free optimization platform nevergrad is a Python 3.6+ library. It can be installed with: pip install nevergrad More installati

Meta Research 3.4k Jan 08, 2023
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
Time series forecasting with PyTorch

Our article on Towards Data Science introduces the package and provides background information. Pytorch Forecasting aims to ease state-of-the-art time

Jan Beitner 2.5k Jan 02, 2023
Forecast dynamically at scale with this unique package. pip install scalecast

🌄 Scalecast: Dynamic Forecasting at Scale About This package uses a scaleable forecasting approach in Python with common scikit-learn and statsmodels

Michael Keith 158 Jan 03, 2023
Lingtrain Alignment Studio is an ML based app for texts alignment on different languages.

Lingtrain Alignment Studio Intro Lingtrain Alignment Studio is the ML based app for accurate texts alignment on different languages. Extracts parallel

Sergei Averkiev 186 Jan 03, 2023
Xeasy-ml is a packaged machine learning framework.

xeasy-ml 1. What is xeasy-ml Xeasy-ml is a packaged machine learning framework. It allows a beginner to quickly build a machine learning model and use

9 Mar 14, 2022
Stacked Generalization (Ensemble Learning)

Stacking (stacked generalization) Overview ikki407/stacking - Simple and useful stacking library, written in Python. User can use models of scikit-lea

Ikki Tanaka 192 Dec 23, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion is a Python library for time series intelligence. It provides an end-to-end machine learning framework that includes loading and transforming data, building and training models, post-processi

Salesforce 2.8k Jan 05, 2023
monolish: MONOlithic Liner equation Solvers for Highly-parallel architecture

monolish is a linear equation solver library that monolithically fuses variable data type, matrix structures, matrix data format, vendor specific data transfer APIs, and vendor specific numerical alg

RICOS Co. Ltd. 179 Dec 21, 2022
Firebase + Cloudrun + Machine learning

A simple end to end consumer lending decision engine powered by Google Cloud Platform (firebase hosting and cloudrun)

Emmanuel Ogunwede 8 Aug 16, 2022
Flightfare-Prediction - It is a Flightfare Prediction Web Application Using Machine learning,Python and flask

Flight_fare-Prediction It is a Flight_fare Prediction Web Application Using Machine learning,Python and flask Using Machine leaning i have created a F

1 Dec 06, 2022