Stacked Generalization (Ensemble Learning)

Overview

Stacking (stacked generalization)

PyPI version license

Overview

ikki407/stacking - Simple and useful stacking library, written in Python.

User can use models of scikit-learn, XGboost, and Keras for stacking.
As a feature of this library, all out-of-fold predictions can be saved for further analisys after training.

Description

Stacking (sometimes called stacked generalization) involves training a learning algorithm to combine the predictions of several other learning algorithms. The basic idea is to use a pool of base classifiers, then using another classifier to combine their predictions, with the aim of reducing the generalization error.

This blog is very helpful to understand stacking and ensemble learning.

Usage

See working example:

To run these examples, just run sh run.sh. Note that:

  1. Set train and test dataset under data/input

  2. Created features from original dataset need to be under data/output/features

  3. Models for stacking are defined in scripts.py under scripts folder

  4. Need to define created features in that scripts

  5. Just run sh run.sh (python scripts/XXX.py).

Detailed Usage

  1. Set train dataset with its target data and test dataset.

    FEATURE_LIST_stage1 = {
                    'train':(
                             INPUT_PATH + 'train.csv',
                             FEATURES_PATH + 'train_log.csv',
                            ),
    
                    'target':(
                             INPUT_PATH + 'target.csv',
                            ),
    
                    'test':(
                             INPUT_PATH + 'test.csv',
                             FEATURES_PATH + 'test_log.csv',
                            ),
                    }
  2. Define model classes that inherit BaseModel class, which are used in Stage 1, Stage 2, ..., Stage N.

    # For Stage 1
    PARAMS_V1 = {
            'colsample_bytree':0.80,
            'learning_rate':0.1,"eval_metric":"auc",
            'max_depth':5, 'min_child_weight':1,
            'nthread':4,
            'objective':'binary:logistic','seed':407,
            'silent':1, 'subsample':0.60,
            }
    
    class ModelV1(BaseModel):
            def build_model(self):
                return XGBClassifier(params=self.params, num_round=10)
    
    ...
    
    # For Stage 2
    PARAMS_V1_stage2 = {
                        'penalty':'l2',
                        'tol':0.0001, 
                        'C':1.0, 
                        'random_state':None, 
                        'verbose':0, 
                        'n_jobs':8
                        }
    
    class ModelV1_stage2(BaseModel):
            def build_model(self):
                return LR(**self.params)
  3. Train each models of Stage 1 for stacking.

    m = ModelV1(name="v1_stage1",
                flist=FEATURE_LIST_stage1,
                params = PARAMS_V1,
                kind = 'st'
                )
    m.run()
    
    ...
  4. Train each model(s) of Stage 2 by using the prediction of Stage-1 models.

    FEATURE_LIST_stage2 = {
                'train': (
                         TEMP_PATH + 'v1_stage1_all_fold.csv',
                         TEMP_PATH + 'v2_stage1_all_fold.csv',
                         TEMP_PATH + 'v3_stage1_all_fold.csv',
                         TEMP_PATH + 'v4_stage1_all_fold.csv',
                         ...
                         ),
    
                'target':(
                         INPUT_PATH + 'target.csv',
                         ),
    
                'test': (
                        TEMP_PATH + 'v1_stage1_test.csv',
                        TEMP_PATH + 'v2_stage1_test.csv',
                        TEMP_PATH + 'v3_stage1_test.csv',
                        TEMP_PATH + 'v4_stage1_test.csv',
                        ...                     
                        ),
                }
    
    # Models
    m = ModelV1_stage2(name="v1_stage2",
                    flist=FEATURE_LIST_stage2,
                    params = PARAMS_V1_stage2,
                    kind = 'st',
                    )
    m.run()
  5. Final result is saved as v1_stage2_TestInAllTrainingData.csv.

Prerequisite

  • (MaxOS) Install xgboost first manually: pip install xgboost
  • (Optional) Install paratext: fast csv loading library

Installation

To install stacking, cd to the stacking folder and run the install command**(up-to-date version, recommended)**:

sudo python setup.py install

You can also install stacking from PyPI:

pip install stacking

Files

Details of scripts

  • base.py:
    • Base models for stacking are defined here (using sklearn.base.BaseEstimator).
    • Some models are defined here. e.g., XGBoost, Keras, Vowpal Wabbit.
    • These models are wrapped as scikit-learn like (using sklearn.base.ClassifierMixin, sklearn.base.RegressorMixin).
    • That is, model class has some methods, fit(), predict_proba(), and predict().

New user-defined models can be added here.

Scikit-learn models can be used.

Base model have some arguments.

  • 's': Stacking. Saving oof(out-of-fold) prediction({model_name}_all_fold.csv) and average of test prediction based on train-fold models({model_name}_test.csv). These files will be used for next level stacking.

  • 't': Training with all data and predict test({model_name}_TestInAllTrainingData.csv). In this training, no validation data are used.

  • 'st': Stacking and then training with all data and predict test ('s' and 't').

  • 'cv': Only cross validation without saving the prediction.

Define several models and its parameters used for stacking. Define task details on the top of script. Train and test feature set are defined here. Need to define CV-fold index.

Any level stacking can be defined.

PredictionFiles

Reference

[1] Wolpert, David H. Stacked generalization, Neural Networks, 5(2), 241-259

[2] Ensemble learning(Stacking)

[3] KAGGLE ENSEMBLING GUIDE

Owner
Ikki Tanaka
Data Scientist, Machine Learning/Reinforcement Learning Engineer. Kaggle Master.
Ikki Tanaka
Deploy AutoML as a service using Flask

AutoML Service Deploy automated machine learning (AutoML) as a service using Flask, for both pipeline training and pipeline serving. The framework imp

Chris Rawles 221 Nov 04, 2022
DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

27 Aug 19, 2022
This is my implementation on the K-nearest neighbors algorithm from scratch using Python

K Nearest Neighbors (KNN) algorithm In this Machine Learning world, there are various algorithms designed for classification problems such as Logistic

sonny1902 1 Jan 08, 2022
Simple, fast, and parallelized symbolic regression in Python/Julia via regularized evolution and simulated annealing

Parallelized symbolic regression built on Julia, and interfaced by Python. Uses regularized evolution, simulated annealing, and gradient-free optimization.

Miles Cranmer 924 Jan 03, 2023
Project to deploy a machine learning model based on Titanic dataset from Kaggle

kaggle_titanic_deploy Project to deploy a machine learning model based on Titanic dataset from Kaggle In this project we used the Titanic dataset from

Vivian Yamassaki 8 May 23, 2022
onelearn: Online learning in Python

onelearn: Online learning in Python Documentation | Reproduce experiments | onelearn stands for ONE-shot LEARNning. It is a small python package for o

15 Nov 06, 2022
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
Python module for performing linear regression for data with measurement errors and intrinsic scatter

Linear regression for data with measurement errors and intrinsic scatter (BCES) Python module for performing robust linear regression on (X,Y) data po

Rodrigo Nemmen 56 Sep 27, 2022
Automated Time Series Forecasting

AutoTS AutoTS is a time series package for Python designed for rapidly deploying high-accuracy forecasts at scale. There are dozens of forecasting mod

Colin Catlin 652 Jan 03, 2023
PLUR is a collection of source code datasets suitable for graph-based machine learning.

PLUR (Programming-Language Understanding and Repair) is a collection of source code datasets suitable for graph-based machine learning. We provide scripts for downloading, processing, and loading the

Google Research 76 Nov 25, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto: Machine Learning: Linguagens de Programacao 2004-2001 Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2

Victor Hugo Negrisoli 0 Jun 29, 2021
Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft 366 Jan 03, 2023
Data Version Control or DVC is an open-source tool for data science and machine learning projects

Continuous Machine Learning project integration with DVC Data Version Control or DVC is an open-source tool for data science and machine learning proj

Azaria Gebremichael 2 Jul 29, 2021
An AutoML survey focusing on practical systems.

This project is a community effort in constructing and maintaining an up-to-date beginner-friendly introduction to AutoML, focusing on practical systems. AutoML is a big field, and continues to grow

AutoGOAL 16 Aug 14, 2022
Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning

Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning My

3 Apr 10, 2022
Module is created to build a spam filter using Python and the multinomial Naive Bayes algorithm.

Naive-Bayes Spam Classificator Module is created to build a spam filter using Python and the multinomial Naive Bayes algorithm. Main goal is to code a

Viktoria Maksymiuk 1 Jun 27, 2022
CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL)

CyLP CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL). CyLP’s unique feature is that you can use i

COIN-OR Foundation 161 Dec 14, 2022
Fundamentals of Machine Learning

Fundamentals-of-Machine-Learning This repository introduces the basics of machine learning algorithms for preprocessing, regression and classification

Happy N. Monday 3 Feb 15, 2022