SNE-RoadSeg in PyTorch, ECCV 2020

Overview

SNE-RoadSeg

Introduction

This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentation for Accurate Freespace Detection, accepted by ECCV 2020. This is our project page.

In this repo, we provide the training and testing setup for the KITTI Road Dataset. We test our code in Python 3.7, CUDA 10.0, cuDNN 7 and PyTorch 1.1. We provide Dockerfile to build the docker image we use.

Setup

Please setup the KITTI Road Dataset and pretrained weights according to the following folder structure:

SNE-RoadSeg
 |-- checkpoints
 |  |-- kitti
 |  |  |-- kitti_net_RoadSeg.pth
 |-- data
 |-- datasets
 |  |-- kitti
 |  |  |-- training
 |  |  |  |-- calib
 |  |  |  |-- depth_u16
 |  |  |  |-- gt_image_2
 |  |  |  |-- image_2
 |  |  |-- validation
 |  |  |  |-- calib
 |  |  |  |-- depth_u16
 |  |  |  |-- gt_image_2
 |  |  |  |-- image_2
 |  |  |-- testing
 |  |  |  |-- calib
 |  |  |  |-- depth_u16
 |  |  |  |-- image_2
 |-- examples
 ...

image_2, gt_image_2 and calib can be downloaded from the KITTI Road Dataset. We implement depth_u16 based on the LiDAR data provided in the KITTI Road Dataset, and it can be downloaded from here. Note that depth_u16 has the uint16 data format, and the real depth in meters can be obtained by double(depth_u16)/1000. Moreover, the pretrained weights kitti_net_RoadSeg.pth for our SNE-RoadSeg-152 can be downloaded from here.

Usage

Run an example

We provide one example in examples. To run it, you only need to setup the checkpoints folder as mentioned above. Then, run the following script:

bash ./scripts/run_example.sh

and you will see normal.png, pred.png and prob_map.png in examples. normal.png is the normal estimation by our SNE; pred.png is the freespace prediction by our SNE-RoadSeg; and prob_map.png is the probability map predicted by our SNE-RoadSeg.

Testing for KITTI submission

For KITTI submission, you need to setup the checkpoints and the datasets/kitti/testing folder as mentioned above. Then, run the following script:

bash ./scripts/test.sh

and you will get the prediction results in testresults. After that you can follow the submission instructions to transform the prediction results into the BEV perspective for submission.

If everything works fine, you will get a MaxF score of 96.74 for URBAN. Note that this is our re-implemented weights, and it is very similar to the reported ones in the paper (a MaxF score of 96.75 for URBAN).

Training on the KITTI dataset

For training, you need to setup the datasets/kitti folder as mentioned above. You can split the original training set into a new training set and a validation set as you like. Then, run the following script:

bash ./scripts/train.sh

and the weights will be saved in checkpoints and the tensorboard record containing the loss curves as well as the performance on the validation set will be save in runs. Note that use-sne in train.sh controls if we will use our SNE model, and the default is True. If you delete it, our RoadSeg will take depth images as input, and you also need to delete use-sne in test.sh to avoid errors when testing.

Citation

If you use this code for your research, please cite our paper.

@inproceedings{fan2020sne,
  author = {Fan, Rui and Wang, Hengli and Cai, Peide and Liu, Ming},
  title = {SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentation for Accurate Freespace Detection},
  booktitle = {Proceedings of the European Conference on Computer Vision (ECCV)},
  year = {2020},
  organization = {Springer},
}

Acknowledgement

Our code is inspired by pytorch-CycleGAN-and-pix2pix, and we thank Jun-Yan Zhu for their great work.

Owner
Ph.D. candidate in HKUST, supervised by Prof.Ming Liu, a member of RAM-LAB, Robotics Institute
Self-Guided Contrastive Learning for BERT Sentence Representations

Self-Guided Contrastive Learning for BERT Sentence Representations This repository is dedicated for releasing the implementation of the models utilize

Taeuk Kim 16 Dec 04, 2022
[WWW 2022] Zero-Shot Stance Detection via Contrastive Learning

PT-HCL for Zero-Shot Stance Detection The code of this repository is constantly being updated... Please look forward to it! Introduction This reposito

Akuchi 12 Dec 21, 2022
[CVPR 2020] Transform and Tell: Entity-Aware News Image Captioning

Transform and Tell: Entity-Aware News Image Captioning This repository contains the code to reproduce the results in our CVPR 2020 paper Transform and

Alasdair Tran 85 Dec 13, 2022
Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021)

Substrate_Mediated_Invasion Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021) 2DSolver.jl reproduces the simulat

Matthew Simpson 0 Nov 09, 2021
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion Preface This directory provides an implementation of the algori

Jean-Samuel Leboeuf 0 Nov 03, 2021
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"

SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th

Zekarias Tilahun 24 Jun 21, 2022
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022
use tensorflow 2.0 to tell a dog and cat from a specified picture

dog_or_cat use tensorflow 2.0 to tell a dog and cat from a specified picture This is one of the classic experiments for the introduction of deep learn

你这个代码我看不懂 1 Oct 22, 2021
This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of lectures and exercises

2021-Deep-learning This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of paper and exercises.

108 Feb 24, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Jan 03, 2023
Backdoor Attack through Frequency Domain

Backdoor Attack through Frequency Domain DEPENDENCIES python==3.8.3 numpy==1.19.4 tensorflow==2.4.0 opencv==4.5.1 idx2numpy==1.2.3 pytorch==1.7.0 Data

5 Jun 18, 2022
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

11 Nov 23, 2022
HW3 ― GAN, ACGAN and UDA

HW3 ― GAN, ACGAN and UDA In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN

grassking100 1 Dec 13, 2021
Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid

SPN: Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyrami

12 Jun 27, 2022
Learning to Reach Goals via Iterated Supervised Learning

Vanilla GCSL This repository contains a vanilla implementation of "Learning to Reach Goals via Iterated Supervised Learning" proposed by Dibya Gosh et

Christoph Heindl 4 Aug 10, 2022