SNE-RoadSeg in PyTorch, ECCV 2020

Overview

SNE-RoadSeg

Introduction

This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentation for Accurate Freespace Detection, accepted by ECCV 2020. This is our project page.

In this repo, we provide the training and testing setup for the KITTI Road Dataset. We test our code in Python 3.7, CUDA 10.0, cuDNN 7 and PyTorch 1.1. We provide Dockerfile to build the docker image we use.

Setup

Please setup the KITTI Road Dataset and pretrained weights according to the following folder structure:

SNE-RoadSeg
 |-- checkpoints
 |  |-- kitti
 |  |  |-- kitti_net_RoadSeg.pth
 |-- data
 |-- datasets
 |  |-- kitti
 |  |  |-- training
 |  |  |  |-- calib
 |  |  |  |-- depth_u16
 |  |  |  |-- gt_image_2
 |  |  |  |-- image_2
 |  |  |-- validation
 |  |  |  |-- calib
 |  |  |  |-- depth_u16
 |  |  |  |-- gt_image_2
 |  |  |  |-- image_2
 |  |  |-- testing
 |  |  |  |-- calib
 |  |  |  |-- depth_u16
 |  |  |  |-- image_2
 |-- examples
 ...

image_2, gt_image_2 and calib can be downloaded from the KITTI Road Dataset. We implement depth_u16 based on the LiDAR data provided in the KITTI Road Dataset, and it can be downloaded from here. Note that depth_u16 has the uint16 data format, and the real depth in meters can be obtained by double(depth_u16)/1000. Moreover, the pretrained weights kitti_net_RoadSeg.pth for our SNE-RoadSeg-152 can be downloaded from here.

Usage

Run an example

We provide one example in examples. To run it, you only need to setup the checkpoints folder as mentioned above. Then, run the following script:

bash ./scripts/run_example.sh

and you will see normal.png, pred.png and prob_map.png in examples. normal.png is the normal estimation by our SNE; pred.png is the freespace prediction by our SNE-RoadSeg; and prob_map.png is the probability map predicted by our SNE-RoadSeg.

Testing for KITTI submission

For KITTI submission, you need to setup the checkpoints and the datasets/kitti/testing folder as mentioned above. Then, run the following script:

bash ./scripts/test.sh

and you will get the prediction results in testresults. After that you can follow the submission instructions to transform the prediction results into the BEV perspective for submission.

If everything works fine, you will get a MaxF score of 96.74 for URBAN. Note that this is our re-implemented weights, and it is very similar to the reported ones in the paper (a MaxF score of 96.75 for URBAN).

Training on the KITTI dataset

For training, you need to setup the datasets/kitti folder as mentioned above. You can split the original training set into a new training set and a validation set as you like. Then, run the following script:

bash ./scripts/train.sh

and the weights will be saved in checkpoints and the tensorboard record containing the loss curves as well as the performance on the validation set will be save in runs. Note that use-sne in train.sh controls if we will use our SNE model, and the default is True. If you delete it, our RoadSeg will take depth images as input, and you also need to delete use-sne in test.sh to avoid errors when testing.

Citation

If you use this code for your research, please cite our paper.

@inproceedings{fan2020sne,
  author = {Fan, Rui and Wang, Hengli and Cai, Peide and Liu, Ming},
  title = {SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentation for Accurate Freespace Detection},
  booktitle = {Proceedings of the European Conference on Computer Vision (ECCV)},
  year = {2020},
  organization = {Springer},
}

Acknowledgement

Our code is inspired by pytorch-CycleGAN-and-pix2pix, and we thank Jun-Yan Zhu for their great work.

Owner
Ph.D. candidate in HKUST, supervised by Prof.Ming Liu, a member of RAM-LAB, Robotics Institute
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting 1. Classification Task PyTorch implementat

Yongho Kim 0 Apr 24, 2022
9th place solution

AllDataAreExt-Galixir-Kaggle-HPA-2021-Solution Team Members Qishen Ha is Master of Engineering from the University of Tokyo. Machine Learning Engineer

daishu 5 Nov 18, 2021
BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands.

BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands. Keeping statistics of whom are most visible and recognisable in the series and wether or not it has an im

Frederik 2 Jan 04, 2022
PyTorch implementation of Off-policy Learning in Two-stage Recommender Systems

Off-Policy-2-Stage This repo provides a PyTorch implementation of the MovieLens experiments for the following paper: Off-policy Learning in Two-stage

Jiaqi Ma 25 Dec 12, 2022
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
Instance-wise Feature Importance in Time (FIT)

Instance-wise Feature Importance in Time (FIT) FIT is a framework for explaining time series perdiction models, by assigning feature importance to eve

Sana 46 Dec 25, 2022
This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems.

This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. The main directory include the code

0 Dec 23, 2021
Source code for the NeurIPS 2021 paper "On the Second-order Convergence Properties of Random Search Methods"

Second-order Convergence Properties of Random Search Methods This repository the paper "On the Second-order Convergence Properties of Random Search Me

Adamos Solomou 0 Nov 13, 2021
VOGUE: Try-On by StyleGAN Interpolation Optimization

VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples.

Wei ZHANG 66 Dec 09, 2022
coldcuts is an R package to automatically generate and plot segmentation drawings in R

coldcuts coldcuts is an R package that allows you to draw and plot automatically segmentations from 3D voxel arrays. The name is inspired by one of It

2 Sep 03, 2022
Run object detection model on the Raspberry Pi

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

Dimitri Yanovsky 6 Oct 08, 2022
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo

103 Dec 22, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou

Microsoft 608 Jan 02, 2023
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
Fine-Tune EleutherAI GPT-Neo to Generate Netflix Movie Descriptions in Only 47 Lines of Code Using Hugginface And DeepSpeed

GPT-Neo-2.7B Fine-Tuning Example Using HuggingFace & DeepSpeed Installation cd venv/bin ./pip install -r ../../requirements.txt ./pip install deepspe

Nikita 180 Jan 05, 2023
QueryFuzz implements a metamorphic testing approach to test Datalog engines.

Datalog is a popular query language with applications in several domains. Like any complex piece of software, Datalog engines may contain bugs. The mo

34 Sep 10, 2022