Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents

Overview

Open in Colab

Language Models as Zero-Shot Planners:
Extracting Actionable Knowledge for Embodied Agents

[Project Page] [Paper] [Video]

Wenlong Huang1, Pieter Abbeel1, Deepak Pathak*2, Igor Mordatch*3 (*equal advising)

1University of California, Berkeley, 2Carnegie Mellon University, 3Google Brain

This is the official demo code for our Language Models as Zero-Shot Planners paper. The code demonstrates how Large Language Models, such as GPT-3 and Codex, can generate action plans for complex human activities (e.g. "make breakfast"), even without any further training. The code can be used with any available language models from OpenAI API and Huggingface Transformers with a common interface.

If you find this work useful in your research, please cite using the following BibTeX:

@article{huang2022language,
      title={Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents},
      author={Huang, Wenlong and Abbeel, Pieter and Pathak, Deepak and Mordatch, Igor},
      journal={arXiv preprint arXiv:2201.07207},
      year={2022}
    }

Local Setup or Open in Colab

Requirements

  • Python=3.6.13
  • CUDA=11.3

Setup Instructions

git clone https://github.com/huangwl18/language-planner.git
cd language-planner/
conda create --name language-planner-env python=3.6.13
conda activate language-planner-env
pip install --upgrade pip
pip install -r requirements.txt

Running Code

See demo.ipynb (or Open in Colab) for a complete walk-through of our method. Feel free to experiment with any household tasks that you come up with (or any tasks beyond household domain if you provide necessary actions in available_actions.json)!

Note:

  • It is observed that best results can be obtained with larger language models. If you cannot run Huggingface Transformers models locally or on Google Colab due to memory constraint, it is recommended to register an OpenAI API account and use GPT-3 or Codex (As of 01/2022, $18 free credits are awarded to new accounts and Codex series are free after admitted from the waitlist).
  • Due to language models' high sensitivity to sampling hyperparameters, you may need to tune sampling hyperparameters for different models to obtain the best results.
  • The code uses the list of available actions supported in VirtualHome 1.0's Evolving Graph Simulator. The available actions are stored in available_actions.json. The actions should support a large variety of household tasks. However, you may modify or replace this file if you're interested in a different set of actions or a different domain of tasks (beyond household domain).
  • A subset of the manually-annotated examples originally collected by the VirtualHome paper is used as available examples in the prompt. They are transformed to natural language format and stored in available_examples.json. Feel free to change this file for a different set of available examples.
Owner
Wenlong Huang
Undergraduate Student @ UC Berkeley
Wenlong Huang
Input english text, then translate it between languages n times using the Deep Translator Python Library.

mass-translator About Input english text, then translate it between languages n times using the Deep Translator Python Library. How to Use Install dep

2 Mar 04, 2022
Sentence Embeddings with BERT & XLNet

Sentence Transformers: Multilingual Sentence Embeddings using BERT / RoBERTa / XLM-RoBERTa & Co. with PyTorch This framework provides an easy method t

Ubiquitous Knowledge Processing Lab 9.1k Jan 02, 2023
Analyse japanese ebooks using MeCab to determine the difficulty level for japanese learners

japanese-ebook-analysis This aim of this project is to make analysing the contents of a japanese ebook easy and streamline the process for non-technic

Christoffer Aakre 14 Jul 23, 2022
A library for end-to-end learning of embedding index and retrieval model

Poeem Poeem is a library for efficient approximate nearest neighbor (ANN) search, which has been widely adopted in industrial recommendation, advertis

54 Dec 21, 2022
Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

18 Nov 28, 2022
This is the source code of RPG (Reward-Randomized Policy Gradient)

RPG (Reward-Randomized Policy Gradient) Zhenggang Tang*, Chao Yu*, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Shaolei Du, Yu Wang, Yi Wu (

40 Nov 25, 2022
A simple chatbot based on chatterbot that you can use for anything has basic features

Chatbotium A simple chatbot based on chatterbot that you can use for anything has basic features. I have some errors Read the paragraph below: Known b

Herman 1 Feb 16, 2022
🍊 PAUSE (Positive and Annealed Unlabeled Sentence Embedding), accepted by EMNLP'2021 🌴

PAUSE: Positive and Annealed Unlabeled Sentence Embedding Sentence embedding refers to a set of effective and versatile techniques for converting raw

EQT 21 Dec 15, 2022
Rank-One Model Editing for Locating and Editing Factual Knowledge in GPT

Rank-One Model Editing (ROME) This repository provides an implementation of Rank-One Model Editing (ROME) on auto-regressive transformers (GPU-only).

Kevin Meng 130 Dec 21, 2022
Perform sentiment analysis on textual data that people generally post on websites like social networks and movie review sites.

Sentiment Analyzer The goal of this project is to perform sentiment analysis on textual data that people generally post on websites like social networ

Madhusudan.C.S 53 Mar 01, 2022
Fully featured implementation of Routing Transformer

Routing Transformer A fully featured implementation of Routing Transformer. The paper proposes using k-means to route similar queries / keys into the

Phil Wang 246 Jan 02, 2023
A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk.

Simple-Vosk A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk. Check out the official Vosk G

2 Jun 19, 2022
🦅 Pretrained BigBird Model for Korean (up to 4096 tokens)

Pretrained BigBird Model for Korean What is BigBird • How to Use • Pretraining • Evaluation Result • Docs • Citation 한국어 | English What is BigBird? Bi

Jangwon Park 183 Dec 14, 2022
本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。

【关于 NLP】那些你不知道的事 作者:杨夕、芙蕖、李玲、陈海顺、twilight、LeoLRH、JimmyDU、艾春辉、张永泰、金金金 介绍 本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。 目录架构 一、【

1.4k Dec 30, 2022
用Resnet101+GPT搭建一个玩王者荣耀的AI

基于pytorch框架用resnet101加GPT搭建AI玩王者荣耀 本源码模型主要用了SamLynnEvans Transformer 的源码的解码部分。以及pytorch自带的预训练模型"resnet101-5d3b4d8f.pth"

冯泉荔 2.2k Jan 03, 2023
Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

Jan 2 Apr 20, 2022
KoBERTopic은 BERTopic을 한국어 데이터에 적용할 수 있도록 토크나이저와 BERT를 수정한 코드입니다.

KoBERTopic 모델 소개 KoBERTopic은 BERTopic을 한국어 데이터에 적용할 수 있도록 토크나이저와 BERT를 수정했습니다. 기존 BERTopic : https://github.com/MaartenGr/BERTopic/tree/05a6790b21009d

Won Joon Yoo 26 Jan 03, 2023
DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect.

117 Jan 07, 2023
Voice Assistant inspired by Google Assistant, Cortana, Alexa, Siri, ...

author: @shival_gupta VoiceAI This program is an example of a simple virtual assitant It will listen to you and do accordingly It will begin with wish

Shival Gupta 1 Jan 06, 2022
Simple text to phones converter for multiple languages

Phonemizer -- foʊnmaɪzɚ The phonemizer allows simple phonemization of words and texts in many languages. Provides both the phonemize command-line tool

CoML 762 Dec 29, 2022