A2T: Towards Improving Adversarial Training of NLP Models (EMNLP 2021 Findings)

Overview

A2T: Towards Improving Adversarial Training of NLP Models

This is the source code for the EMNLP 2021 (Findings) paper "Towards Improving Adversarial Training of NLP Models".

If you use the code, please cite the paper:

@misc{yoo2021improving,
      title={Towards Improving Adversarial Training of NLP Models}, 
      author={Jin Yong Yoo and Yanjun Qi},
      year={2021},
      eprint={2109.00544},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Prerequisites

The work heavily relies on the TextAttack package. In fact, the main training code is implemented in the TextAttack package.

Required packages are listed in the requirements.txt file.

pip install -r requirements.txt

Data

All of the data used for the paper are available from HuggingFace's Datasets.

For IMDB and Yelp datasets, because there are no official validation splits, we randomly sampled 5k and 10k, respectively, from the training set and used them as valid splits. We provide the splits in this Google Drive folder. To use them with the provided code, place each folder (e.g. imdb, yelp, augmented_data) inside ./data (run mkdir data).

Also, augmented training data generated using SSMBA and back-translation are available in the same folder.

Training

To train BERT model on IMDB dataset with A2T attack for 4 epochs and 1 clean epoch with gamma of 0.2:

python train.py \
    --train imdb \
    --eval imdb \
    --model-type bert \
    --model-save-path ./example \
    --num-epochs 4 \
    --num-clean-epochs 1 \
    --num-adv-examples 0.2 \
    --attack-epoch-interval 1 \
    --attack a2t \
    --learning-rate 5e-5 \
    --num-warmup-steps 100 \
    --grad-accumu-steps 1 \
    --checkpoint-interval-epochs 1 \
    --seed 42

You can also pass roberta to train RoBERTa model instead of BERT model. To select other datasets from the paper, pass rt (MR), yelp, or snli for --train and --eval.

This script is actually just to run the Trainer class from the TextAttack package. To checkout how training is performed, please checkout the Trainer class.

Evaluation

To evalute the accuracy, robustness, and interpretability of our trained model from above, run

python evaluate.py \
    --dataset imdb \
    --model-type bert \
    --checkpoint-paths ./example_run \
    --epoch 4 \
    --save-log \
    --accuracy \
    --robustness \
    --attacks a2t a2t_mlm textfooler bae pwws pso \
    --interpretability 

This takes the last checkpoint model (--epoch 4) and evaluates its accuracy on both IMDB and Yelp dataset (for cross-domain accuracy). It also evalutes the model's robustness against A2T, A2T-MLM, TextFooler, BAE, PWWS, and PSO attacks. Lastly, with the --interpretability flag, AOPC scores are calculated.

Note that you will have to run --robustness and --interpretability with --accuracy (or after you separately evaluate accuracy) since both robustness and intepretability evaluations rely on the accuracy evaluation to know which samples the model was able to predict correctly. By default 1000 samples are attacked to evaluate robustness. Likewise, 1000 samples are used to calculate AOPC score for interpretability.

If you're evaluating multiple models for comparison, it's also advised that you provide all the checkpoint paths together to --checkpoint-paths. This is because the samples that are correctly by each model will be different, so we first need to identify the intersection of the all correct predictions before using them to evaluate robustness for all the models. This will allow fairer comparison of models' robustness rather than using attack different samples for each model.

Data Augmentation

Lastly, we also provide augment.py which we used to perform data augmentation methods such as SSMBA and back-translation.

Following is an example command for augmenting imdb dataset with SSMBA method.

python augment.py \
    --dataset imdb \
    --augmentation ssmba \
    --output-path ./augmented_data \
    --seed 42 

You can also pass backtranslation to --augmentation.

Owner
QData
http://www.cs.virginia.edu/yanjun/
QData
Textlesslib - Library for Textless Spoken Language Processing

textlesslib Textless NLP is an active area of research that aims to extend NLP t

Meta Research 379 Dec 27, 2022
A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models

wav2vec-toolkit A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models This repository accompanies the

Anton Lozhkov 29 Oct 23, 2022
189 Jan 02, 2023
An implementation of model parallel GPT-3-like models on GPUs, based on the DeepSpeed library. Designed to be able to train models in the hundreds of billions of parameters or larger.

GPT-NeoX An implementation of model parallel GPT-3-like models on GPUs, based on the DeepSpeed library. Designed to be able to train models in the hun

EleutherAI 3.1k Jan 08, 2023
A Chinese to English Neural Model Translation Project

ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C

Zhenbang Feng 29 Nov 26, 2022
Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library.

GI-Pi Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library. The SP0

Nick Bild 8 Dec 15, 2021
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 Corpora 📃 Corpora Number of documents Size (GB) BNE 201,080,084 570GB Models 🤖 RoBERTa-base BNE: https://huggingface.co

PlanTL-SANIDAD 203 Dec 20, 2022
The swas programming language

The Swas programming language This is a language that was made for fun. Installation Step 0: Make sure you have python installed Step 1. Clone this re

Swas.py 19 Jul 18, 2022
Chatbot for the Chatango messaging platform

BroiestBot The baddest bot in the game right now. Uses the ch.py framework for joining Chantango rooms and responding to user messages. Commands If a

Todd Birchard 3 Jan 17, 2022
Simple Speech to Text, Text to Speech

Simple Speech to Text, Text to Speech 1. Download Repository Opsi 1 Download repository ini, extract di lokasi yang diinginkan Opsi 2 Jika sudah famil

Habib Abdurrasyid 5 Dec 28, 2021
👄 The most accurate natural language detection library for Python, suitable for long and short text alike

1. What does this library do? Its task is simple: It tells you which language some provided textual data is written in. This is very useful as a prepr

Peter M. Stahl 334 Dec 30, 2022
Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities

Hiring We are hiring at all levels (including FTE researchers and interns)! If you are interested in working with us on NLP and large-scale pre-traine

Microsoft 7.8k Jan 09, 2023
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 02, 2023
Free and Open Source Machine Translation API. 100% self-hosted, offline capable and easy to setup.

LibreTranslate Try it online! | API Docs | Community Forum Free and Open Source Machine Translation API, entirely self-hosted. Unlike other APIs, it d

3.4k Dec 27, 2022
Research code for the paper "Fine-tuning wav2vec2 for speaker recognition"

Fine-tuning wav2vec2 for speaker recognition This is the code used to run the experiments in https://arxiv.org/abs/2109.15053. Detailed logs of each t

Nik 103 Dec 26, 2022
Research code for "What to Pre-Train on? Efficient Intermediate Task Selection", EMNLP 2021

efficient-task-transfer This repository contains code for the experiments in our paper "What to Pre-Train on? Efficient Intermediate Task Selection".

AdapterHub 26 Dec 24, 2022
Code for the paper "Flexible Generation of Natural Language Deductions"

Code for the paper "Flexible Generation of Natural Language Deductions"

Kaj Bostrom 12 Nov 11, 2022
NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking

pretrain4ir_tutorial NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking 用作NLPIR实验室, Pre-training

ZYMa 12 Apr 07, 2022
A high-level yet extensible library for fast language model tuning via automatic prompt search

ruPrompts ruPrompts is a high-level yet extensible library for fast language model tuning via automatic prompt search, featuring integration with Hugg

Sber AI 37 Dec 07, 2022
Easy, fast, effective, and automatic g-code compression!

Getting to the meat of g-code. Easy, fast, effective, and automatic g-code compression! MeatPack nearly doubles the effective data rate of a standard

Scott Mudge 97 Nov 21, 2022