Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

Overview

AdderNet: Do We Really Need Multiplications in Deep Learning?

This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in Deep Learning?

We present adder networks (AdderNets) to trade massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the L1-norm distance between filters and input feature as the output response. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.

UPDATE: The training code is released in 6/28.

Run python main.py to train on CIFAR-10.

UPDATE: Model Zoo about AdderNets are released in 11/27.

Classification results on CIFAR-10 and CIFAR-100 datasets.

Model Method CIFAR-10 CIFAR-100
VGG-small ANN [1] 93.72% 74.58%
PKKD ANN [2] 95.03% 76.94%
ResNet-20 ANN 92.02% 67.60%
PKKD ANN 92.96% 69.93%
ShiftAddNet* [3] 89.32%(160epoch) -
ResNet-32 ANN 93.01% 69.17%
PKKD ANN 93.62% 72.41%

Classification results on ImageNet dataset.

Model Method Top-1 Acc Top-5 Acc
ResNet-18 CNN 69.8% 89.1%
ANN [1] 67.0% 87.6%
PKKD ANN [2] 68.8% 88.6%
ResNet-50 CNN 76.2% 92.9%
ANN 74.9% 91.7%
PKKD ANN 76.8% 93.3%

Super-Resolution results on several SR datasets.

Scale Model Method Set5 (PSNR/SSIM) Set14 (PSNR/SSIM) B100 (PSNR/SSIM) Urban100 (PSNR/SSIM)
×2 VDSR CNN 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140
ANN [4] 37.37/0.9575 32.91/0.9112 31.82/0.8947 30.48/0.9099
EDSR CNN 38.11/0.9601 33.92/0.9195 32.32/0.9013 32.93/0.9351
ANN 37.92/0.9589 33.82/0.9183 32.23/0.9000 32.63/0.9309
×3 VDSR CNN 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279
ANN 33.47/0.9151 29.62/0.8276 28.72/0.7953 26.95/0.8189
EDSR CNN 34.65/0.9282 30.52/0.8462 29.25/0.8093 28.80/0.8653
ANN 34.35/0.9212 30.33/0.8420 29.13/0.8068 28.54/0.8555
×4 VDSR CNN 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524
ANN 31.27/0.8762 27.93/0.7630 27.25/0.7229 25.09/0.7445
EDSR CNN 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033
ANN 32.13/0.8864 28.57/0.7800 27.58/0.7368 26.33/0.7874

*ShiftAddNet [3] used different training setting.

[1] AdderNet: Do We Really Need Multiplications in Deep Learning? Hanting Chen, Yunhe Wang, Chunjing Xu, Boxin Shi, Chao Xu, Qi Tian, Chang Xu. CVPR, 2020. (Oral)

[2] Kernel Based Progressive Distillation for Adder Neural Networks. Yixing Xu, Chang Xu, Xinghao Chen, Wei Zhang, Chunjing XU, Yunhe Wang. NeurIPS, 2020. (Spotlight)

[3] ShiftAddNet: A Hardware-Inspired Deep Network. Haoran You, Xiaohan Chen, Yongan Zhang, Chaojian Li, Sicheng Li, Zihao Liu, Zhangyang Wang, Yingyan Lin. NeurIPS, 2020.

[4] AdderSR: Towards Energy Efficient Image Super-Resolution. Dehua Song, Yunhe Wang, Hanting Chen, Chang Xu, Chunjing Xu, Dacheng Tao. Arxiv, 2020.

Requirements

  • python 3
  • pytorch >= 1.1.0
  • torchvision

Preparation

You can follow pytorch/examples to prepare the ImageNet data.

The pretrained models are available in google drive or baidu cloud (access code:126b)

Usage

Run python main.py to train on CIFAR-10.

Run python test.py --data_dir 'path/to/imagenet_root/' to evaluate on ImageNet val set. You will achieve 74.9% Top accuracy and 91.7% Top-5 accuracy on the ImageNet dataset using ResNet-50.

Run python test.py --dataset cifar10 --model_dir models/ResNet20-AdderNet.pth --data_dir 'path/to/cifar10_root/' to evaluate on CIFAR-10. You will achieve 91.8% accuracy on the CIFAR-10 dataset using ResNet-20.

The inference and training of AdderNets is slow since the adder filters is implemented without cuda acceleration. You can write cuda to achieve higher inference speed.

Citation

@article{AdderNet,
	title={AdderNet: Do We Really Need Multiplications in Deep Learning?},
	author={Chen, Hanting and Wang, Yunhe and Xu, Chunjing and Shi, Boxin and Xu, Chao and Tian, Qi and Xu, Chang},
	journal={CVPR},
	year={2020}
}

Contributing

We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion.

If you plan to contribute new features, utility functions or extensions to the core, please first open an issue and discuss the feature with us. Sending a PR without discussion might end up resulting in a rejected PR, because we might be taking the core in a different direction than you might be aware of.

Owner
HUAWEI Noah's Ark Lab
Working with and contributing to the open source community in data mining, artificial intelligence, and related fields.
HUAWEI Noah's Ark Lab
Export CenterPoint PonintPillars ONNX Model For TensorRT

CenterPoint-PonintPillars Pytroch model convert to ONNX and TensorRT Welcome to CenterPoint! This project is fork from tianweiy/CenterPoint. I impleme

CarkusL 149 Dec 13, 2022
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region. This repository provides the codebase and dataset for our work WORD: Revisiting Or

Healthcare Intelligence Laboratory 71 Jan 07, 2023
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch

alias-free-gan-pytorch Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) This implementation

Kim Seonghyeon 502 Jan 03, 2023
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 07, 2023
Official repository for the paper "Instance-Conditioned GAN"

Official repository for the paper "Instance-Conditioned GAN" by Arantxa Casanova, Marlene Careil, Jakob Verbeek, Michał Drożdżal, Adriana Romero-Soriano.

Facebook Research 510 Dec 30, 2022
a reimplementation of Holistically-Nested Edge Detection in PyTorch

pytorch-hed This is a personal reimplementation of Holistically-Nested Edge Detection [1] using PyTorch. Should you be making use of this work, please

Simon Niklaus 375 Dec 06, 2022
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th

Yvictor 1.1k Jan 02, 2023
PyTorch wrappers for using your model in audacity!

audacitorch This package contains utilities for prepping PyTorch audio models for use in Audacity. More specifically, it provides abstract classes for

Hugo Flores García 130 Dec 14, 2022
A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
Demo for Real-time RGBD-based Extended Body Pose Estimation paper

Real-time RGBD-based Extended Body Pose Estimation This repository is a real-time demo for our paper that was published at WACV 2021 conference The ou

Renat Bashirov 118 Dec 26, 2022
SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

SymmetryNet SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images ACM Transactions on Gra

26 Dec 05, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023
Efficient Sparse Attacks on Videos using Reinforcement Learning

EARL This repository provides a simple implementation of the work "Efficient Sparse Attacks on Videos using Reinforcement Learning" Example: Demo: Her

12 Dec 05, 2021
StyleGAN - Official TensorFlow Implementation

StyleGAN — Official TensorFlow Implementation Picture: These people are not real – they were produced by our generator that allows control over differ

NVIDIA Research Projects 13.1k Jan 09, 2023