Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Overview

Randstad Artificial Intelligence Challenge (powered by VGEN)

Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Struttura directory del progetto

  • directory input:

  • directory output:

    • best_model.joblib: il migliore modello addestrato (su Windows), salvato con la libreria joblib
    • best_predictions.csv: file CSV delle predizioni del miglior modello sul test set, contenente le colonne Job_description, Label_true e Label_pred; il separatore è“;”(assente per motivi di copyright)
  • directory principale:

    • esplorazione_scelta_modello.ipynb: il notebook python che descrive il percorso di esplorazione e scelta del migliore modello machine learning
    • esplorazione_scelta_modello.html: esportazione in formato HTML del suddetto notebook
    • logo.jpg: logo della competizione
    • readme.md: questa guida
    • requirements.txt: le librerie python da installare per riprodurre l'ambiente di addestramento/predizione
    • slides.pdf: la presentazione della soluzione proposta
    • train_model_windows.py: versione Windows dello script python che consente di ripetere l'addestramento, la valutazione del modello, il salvataggio del modello e la scrittura del CSV con le predizioni
    • train_model_linux.py: versione Linux dello script python di addestramento
    • utils.py: modulo python contenente alcune funzioni necessarie per il training e la predizione
    • try_best_model.py: script python di esempio che mostra come caricare il modello salvato e usarlo per nuove predizioni

Preparazione dell'ambiente di esecuzione

Per eseguire gli script, è necessario Python>=3.6. Si consiglia di preparare l’ambiente di esecuzione mediante i seguenti passaggi:

  1. scaricamento del repository
  2. a partire dalla directory principale, creazione di un python virtual environment con il comando
    python3 -m venv venv
  3. attivazione del virtual environment
    • windows
      venv\Scripts\activate
    • linux
      source venv/bin/activate
  4. installazione delle librerie necessarie con il comando
    pip install -r requirements.txt

Esecuzione degli script

  • try_best_model è uno script python di esempio che mostra come caricare il migliore modello salvato e usarlo per nuove predizioni si lancia con la sintassi
    python try_best_model.py
  • Lo script train_model lancia l’addestramento del modello, seguito dalla stampa delle metriche valutate sul test set e può essere eseguito con la sintassi
    • Windows
      python train_model_windows.py
    • Linux
      python train_model_linux.py

      Possono essere specificati i parametri: --save-model (oppure -s), che salva il modello appena addestrato nella directory output, con un nome file indicante data e ora --get-predictions (oppure -p), che genera le predizioni sul test set in formato csv e le salva nella directory di output, con un nome file indicante data e ora

Nota

A causa di un bug noto di numpy, l'addestramento dei modelli su Windows e Linux non è completamente identico e, a parità di parametri e random state, produce modelli leggermenti diversi, con effetti sulle performance (F1).

Si è cercato il più possibile di ottenere modelli con performance vicine nei due sistemi operativi (facendo variare il random state).

Il migliore modello è stato addestrato in ambiente Windows ed è salvato come best_model.joblib. Le predizioni migliori (best_predictions.csv) sono relative a questo modello. Usando lo script fornito (train_model_windows.py), il modello può essere riaddestrato rapidamente (pochi secondi) in ambiente Windows. Anche se addestrato su Windows, può essere correttamente impiegato su Linux per la predizione.

Il modello per Linux, addestrabile con l’apposito script (train_model_linux.py), è molto simile a quello per Windows: le differenze riscontrabili a livello di performance (F1) sono inferiori a 0.001.

Attenzione: usando lo script di addestramento per Windows in ambiente Linux o viceversa, non si ottengono errori di esecuzione, ma il modello addestrato mostra delle performance qualitative (F1) inferiori a quelle attese.

Owner
Stefano Fiorucci
Machine learning engineer, Python developer
Stefano Fiorucci
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Facebook Research 536 Jan 06, 2023
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
Language-Agnostic Website Embedding and Classification

Homepage2Vec Language-Agnostic Website Embedding and Classification based on Curlie labels https://arxiv.org/pdf/2201.03677.pdf Homepage2Vec is a pre-

25 Dec 27, 2022
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
This repository contains code released by Google Research.

This repository contains code released by Google Research.

Google Research 26.6k Dec 31, 2022
Blender scripts for computing geodesic distance

GeoDoodle Geodesic distance computation for Blender meshes Table of Contents Overivew Usage Implementation Overview This addon provides an operator fo

20 Jun 08, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation Table of Contents: Introduction Project Structure Installation Datas

Yu Wang 492 Dec 02, 2022
This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering

Ditch the Gold Standard: Re-evaluating Conversational Question Answering This is the repository for our paper Ditch the Gold Standard: Re-evaluating C

Princeton Natural Language Processing 38 Dec 16, 2022
PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].

VGPL-Visual-Prior PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner (VGPL). Give

Toru 8 Dec 29, 2022
R interface to fast.ai

R interface to fastai The fastai package provides R wrappers to fastai. The fastai library simplifies training fast and accurate neural nets using mod

113 Dec 20, 2022
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
Model Serving Made Easy

The easiest way to build Machine Learning APIs BentoML makes moving trained ML models to production easy: Package models trained with any ML framework

BentoML 4.4k Jan 08, 2023
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 08, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022