Training a Resilient Q-Network against Observational Interference, Causal Inference Q-Networks

Overview

Obs-Causal-Q-Network

AAAI 2022 - Training a Resilient Q-Network against Observational Interference

Preprint | Slides | Colab Demo | PyTorch

Environment Setup

  • option 1 (from conda .yml under conda 10.2 and python 3.6)
conda env create -f obs-causal-q-conda.yml 
  • option 2 (from a clean python 3.6 and please follow the setup of UnityAgent 3D environment for Banana Navigator )
pip install torch torchvision torchaudio
pip install dowhy
pip install gym

1. Example of Training Causal Inference Q-Network (CIQ) on Cartpole

  • Run Causal Inference Q-Network Training (--network 1 for Treatment Inference Q-network)
python 0-cartpole-main.py --network 1
  • Causal Inference Q-Network Architecture

  • Output Logs
observation space: Box(4,)
action space: Discrete(2)
Timing Atk Ratio: 10%
Using CEQNetwork_1. Number of Params: 41872
 Interference Type: 1  Use baseline:  0 use CGM:  1
With:  10.42 % timing attack
Episode 0   Score: 48.00, Average Score: 48.00, Loss: 1.71
With:  0.0 % timing attack
Episode 20   Score: 15.00, Average Score: 18.71, Loss: 30.56
With:  3.57 % timing attack
Episode 40   Score: 28.00, Average Score: 19.83, Loss: 36.36
With:  8.5 % timing attack
Episode 60   Score: 200.00, Average Score: 43.65, Loss: 263.29
With:  9.0 % timing attack
Episode 80   Score: 200.00, Average Score: 103.53, Loss: 116.35
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 193.4
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 164.2
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 147.8
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 193.4
With:  9.5 % timing attack
Episode 100   Score: 200.00, Average Score: 163.20, Loss: 77.38
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 198.4
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 197.8
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 197.6
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 198.6
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 199.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 186.8
Using CEQNetwork_1. Number of Params: 41872
### Evaluation Phase & Report DQNs Test Score : 200.0

Environment solved in 114 episodes!     Average Score: 195.55
Environment solved in 114 episodes!     Average Score: 195.55 +- 25.07
############# Basic Evaluate #############
Using CEQNetwork_1. Number of Params: 41872
Evaluate Score : 200.0
############# Noise Evaluate #############
Using CEQNetwork_1. Number of Params: 41872
Robust Score : 200.0

2. Example of Training a "Variational" Causal Inference Q-Network on Unity 3D Banana Navigator

  • Run Variational Causal Inference Q-Networks (VCIQs) Training (--network 3 for Causal Variational Inference)
python 1-banana-navigator-main.py --network 3
  • Variational Causal Inference Q-Network Architecture

  • Output Logs
'Academy' started successfully!
Unity Academy name: Academy
        Number of Brains: 1
        Number of External Brains : 1
        Lesson number : 0
        Reset Parameters :

Unity brain name: BananaBrain
        Number of Visual Observations (per agent): 0
        Vector Observation space type: continuous
        Vector Observation space size (per agent): 37
        Number of stacked Vector Observation: 1
        Vector Action space type: discrete
        Vector Action space size (per agent): 4
        Vector Action descriptions: , , , 
Timing Atk Ratio: 10%
Using CEVAE_QNetwork.
Unity Worker id: 10  T: 1  Use baseline:  0  CEVAE:  1
With:  9.67 % timing attack
Episode 0   Score: 0.00, Average Score: 0.00
With:  11.0 % timing attack
Episode 5   Score: 1.00, Average Score: 0.17
With:  11.33 % timing attack
Episode 10   Score: 0.00, Average Score: 0.36
With:  10.33 % timing attack
Episode 15   Score: 0.00, Average Score: 0.56
...
Episode 205   Score: 10.00, Average Score: 9.25
With:  9.33 % timing attack
Episode 210   Score: 9.00, Average Score: 9.70
With:  9.0 % timing attack
Episode 215   Score: 10.00, Average Score: 11.10
With:  8.33 % timing attack
Episode 220   Score: 14.00, Average Score: 10.85
With:  12.33 % timing attack
Episode 225   Score: 19.00, Average Score: 11.70
With:  11.0 % timing attack
Episode 230   Score: 18.00, Average Score: 12.10
With:  7.67 % timing attack
Episode 235   Score: 21.00, Average Score: 11.60
With:  9.67 % timing attack
Episode 240   Score: 16.00, Average Score: 12.05

Environment solved in 242 episodes!     Average Score: 12.50
Environment solved in 242 episodes!     Average Score: 12.50 +- 4.87
############# Basic Evaluate #############
Using CEVAE_QNetwork.
Evaluate Score : 12.6
############# Noise Evaluate #############
Using CEVAE_QNetwork.
Robust Score : 12.5

Reference

This fun work was initialzed when Danny and I first read the Causal Variational Model between 2018 to 2019 with the helps from Dr. Yi Ouyang and Dr. Pin-Yu Chen.

Please consider to reference the paper if you find this work helpful or relative to your research.

@article{yang2021causal,
  title={Causal Inference Q-Network: Toward Resilient Reinforcement Learning},
  author={Yang, Chao-Han Huck and Hung, I and Danny, Te and Ouyang, Yi and Chen, Pin-Yu},
  journal={arXiv preprint arXiv:2102.09677},
  year={2021}
}
Owner
Speech, Privacy, Robust RL, and Causal Inference.
Some useful blender add-ons for SMPL skeleton's poses and global translation.

Blender add-ons for SMPL skeleton's poses and trans There are two blender add-ons for SMPL skeleton's poses and trans.The first is for making an offli

犹在镜中 154 Jan 04, 2023
Continuous Conditional Random Field Convolution for Point Cloud Segmentation

CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c

Fei Yang 8 Dec 08, 2022
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
official implemntation for "Contrastive Learning with Stronger Augmentations"

CLSA CLSA is a self-supervised learning methods which focused on the pattern learning from strong augmentations. Copyright (C) 2020 Xiao Wang, Guo-Jun

Lab for MAchine Perception and LEarning (MAPLE) 47 Nov 29, 2022
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

Berivan Isik 8 Dec 08, 2022
Lazy, a tool for running things in idle time

Lazy, a tool for running things in idle time Mostly used to stop CUDA ML model training from making my desktop unusable. Simply monitors keyboard/mous

N Shepperd 46 Nov 06, 2022
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation

AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti

Hao Tang 530 Dec 27, 2022
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
This library is a location of the LegacyLogger for PyTorch Lightning.

neptune-contrib Documentation See neptune-contrib documentation site Installation Get prerequisites python versions 3.5.6/3.6 are supported Install li

neptune.ai 26 Oct 07, 2021
Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES)

Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES) This repo contains the full NITRATES pipeline for maximum likelihood-driven discov

13 Nov 08, 2022
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022
Automatic differentiation with weighted finite-state transducers.

GTN: Automatic Differentiation with WFSTs Quickstart | Installation | Documentation What is GTN? GTN is a framework for automatic differentiation with

100 Dec 29, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
Towards Fine-Grained Reasoning for Fake News Detection

FinerFact This is the PyTorch implementation for the FinerFact model in the AAAI 2022 paper Towards Fine-Grained Reasoning for Fake News Detection (Ar

Ahren_Jin 15 Dec 15, 2022
Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System

Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System This repository contains code for the paper Schultheis,

2 Oct 28, 2022