Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

Overview

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning

Compute features for 3D point cloud registration. The article is available on Arxiv. It relies on:

  • A multi scale sparse voxel architecture
  • Self-supervised fine-tuning The combination of both allows better generalization capabilities and transfer across different datasets.

The code is available on the torch-points3d repository. This repository is to show how to launch the code for training and testing.

Demo

If you want to try MS-SVConv without installing anything on your computer, A Google colab notebook is available here (it takes few minutes to install everything). In the colab, we compute features using MS-SVConv and use Ransac (implementation of Open3D) to compute the transformation. You can try on 3DMatch on ETH. With this notebook, you can directly use the pretrained model on your project !

Installation

The code have been tried on an NVDIA RTX 1080 Ti with CUDA version 10.1. The OS was Ubuntu 18.04.

Installation for training and evaluation

This installation step is necessary if you want to train and evaluate MS-SVConv.

first you need, to clone the torch-points3d repository

git clone https://github.com/nicolas-chaulet/torch-points3d.git

Torch-points3d uses poetry to manage the packages. after installing Poetry, run :

poetry install --no-root

Activate the environnement

poetry shell

If you want to train MS-SVConv on 3DMatch, you will need pycuda (It's optional for testing).

pip install pycuda

You will also need to install Minkowski Engine and torchsparse Finally, you will need TEASER++ for testing.

If you have problems with installation (espaecially with pytorch_geometric), please visit the Troubleshooting section of torch-points3d page.

Training

registration

If you want to train MS-SVConv with 3 heads starting at the scale 2cm, run this command:

poetry run python train.py task=registration model_type=ms_svconv_base model_name=MS_SVCONV_B2cm_X2_3head dataset=fragment3dmatch training=sparse_fragment_reg tracker_options.make_submission=True training.epochs=200 eval_frequency=10

automatically, the code will call the right yaml file in conf/data/registration for the dataset and conf/model/registration for the model. If you just want to train MS-SVConv with 1 head, run this command

poetry run python train.py task=registration models=registration/ms_svconv_base model_name=MS_SVCONV_B2cm_X2_1head data=registration/fragment3dmatch training=sparse_fragment_reg tracker_options.make_submission=True epochs=200 eval_frequency=10

You can modify some hyperparameters directly on the command line. For example, if you want to change the learning rate of 1e-2, you can run:

poetry run python train.py task=registration models=registration/ms_svconv_base model_name=MS_SVCONV_B2cm_X2_1head data=registration/fragment3dmatch training=sparse_fragment_reg tracker_options.make_submission=True epochs=200 eval_frequency=10 optim.base_lr=1e-2

To resume training:

poetry run python train.py task=registration models=registration/ms_svconv_base model_name=MS_SVCONV_B2cm_X2_3head data=registration/fragment3dmatch training=sparse_fragment_reg tracker_options.make_submission=True epochs=200 eval_frequency=10 checkpoint_dir=/path/of/directory/containing/pretrained/model

WARNING : On 3DMatch, you will need a lot of disk space because the code will download the RGBD image on 3DMatch and build the fragments from scratch. Also the code takes time (few hours).

For 3DMatch, it was supervised training because the pose is necessary. But we can also fine-tune in a self-supervised fashion (without needing the pose).

To train on Modelnet run this command:

poetry run python train.py task=registration models=registration/ms_svconv_base model_name=MS_SVCONV_B2cm_X2_3head data=registration/modelnet_sparse_ss training=sparse_fragment_reg tracker_options.make_submission=True epochs=200 eval_frequency=10

To fine-tune on ETH run this command (First, download the pretrained model from 3DMatch here):

poetry run python train.py task=registration models=registration/ms_svconv_base model_name=MS_SVCONV_B4cm_X2_3head data=registration/eth_base training=sparse_fragment_reg_finetune tracker_options.make_submission=True epochs=200 eval_frequency=10 models.path_pretrained=/path/to/your/pretrained/model.pt

To fine-tune on TUM, run this command:

poetry run python train.py task=registration models=registration/ms_svconv_base model_name=MS_SVCONV_B4cm_X2_3head data=registration/testtum_ss training=sparse_fragment_reg_finetune tracker_options.make_submission=True epochs=200 eval_frequency=10 models.path_pretrained=/path/to/your/pretrained/model.pt

For all these command, it will save in outputs directory log of the training, it will save a .pt file which is the weights of

semantic segmentation

You can also train MS-SVConv on scannet for semantic segmentation. To do this simply run:

poetry run python train.py task=segmentation models=segmentation/ms_svconv_base model_name=MS_SVCONV_B4cm_X2_3head lr_scheduler.params.gamma=0.9922 data=segmentation/scannet-sparse training=minkowski_scannet tracker_options.make_submission=False tracker_options.full_res=False data.process_workers=1 wandb.log=True eval_frequency=10 batch_size=4

And you can easily transfer from registration to segmantation, with this command:

poetry run python train.py task=segmentation models=segmentation/ms_svconv_base model_name=MS_SVCONV_B4cm_X2_3head lr_scheduler.params.gamma=0.9922 data=segmentation/scannet-sparse training=minkowski_scannet tracker_options.make_submission=False tracker_options.full_res=False data.process_workers=1 wandb.log=True eval_frequency=10 batch_size=4 models.path_pretrained=/path/to/your/pretrained/model.pt

Evaluation

If you want to evaluate the models on 3DMatch, download the model here and run:

poetry run python scripts/test_registration_scripts/evaluate.py task=registration models=registration/ms_svconv_base model_name=MS_SVCONV_B2cm_X2_3head data=registration/fragment3dmatch training=sparse_fragment_reg cuda=True data.sym=True checkpoint_dir=/directory/of/the/models/

on ETH (model here),

poetry run python scripts/test_registration_scripts/evaluate.py task=registration models=registration/ms_svconv_base model_name=MS_SVCONV_B4cm_X2_3head data=registration/eth_base training=sparse_fragment_reg cuda=True data.sym=True checkpoint_dir=/directory/of/the/models/

on TUM (model here),

poetry run python scripts/test_registration_scripts/evaluate.py task=registration models=registration/ms_svconv_base model_name=MS_SVCONV_B2cm_X2_3head data=registration/testtum_ss training=sparse_fragment_reg cuda=True data.sym=True checkpoint_dir=/directory/of/the/models/

You can also visualize matches, you can run:

python scripts/test_registration_scripts/see_matches.py task=registration models=registration/ms_svconv_base model_name=MS_SVCONV_B4cm_X2_3head data=registration/eth_base training=sparse_fragment_reg cuda=True data.sym=True checkpoint_dir=/directory/of/the/models/ data.first_subsampling=0.04 +ind=548 +t=22

You should obtain this image

Model Zoo

You can find all the pretrained model (More will be added in the future)

citation

If you like our work, please cite it :

@inproceedings{horache2021mssvconv,
      title={3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning},
      author={Sofiane Horache and Jean-Emmanuel Deschaud and François Goulette},
      year={2021},
      journal={arXiv preprint arXiv:2103.14533}
}

And if you use ETH, 3DMatch, TUM or ModelNet as dataset, please cite the respective authors.

TODO

  • Add other pretrained models on the model zoo
  • Add others datasets such as KITTI Dataset
Fast EMD for Python: a wrapper for Pele and Werman's C++ implementation of the Earth Mover's Distance metric

PyEMD: Fast EMD for Python PyEMD is a Python wrapper for Ofir Pele and Michael Werman's implementation of the Earth Mover's Distance that allows it to

William Mayner 433 Dec 31, 2022
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

Emirhan Kurtuluş 1 Feb 07, 2022
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.

Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,

Yuanming Hu 719 Dec 29, 2022
A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving

A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving Isaac Han, Dong-Hyeok Park, and Kyung-Joong Kim IEEE Access

13 Dec 27, 2022
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

416 Jan 09, 2023
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)

SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo

Jongheon Jeong 17 Dec 27, 2022
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
Clustergram - Visualization and diagnostics for cluster analysis in Python

Clustergram Visualization and diagnostics for cluster analysis Clustergram is a diagram proposed by Matthias Schonlau in his paper The clustergram: A

Martin Fleischmann 96 Dec 26, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021) Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao This

Daniel-Ji 55 Dec 22, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta

141 Jan 03, 2023