Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

Related tags

Deep LearningDsig
Overview

DSIG

Deep Structured Instance Graph for Distilling Object Detectors

Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia.

[pdf] [slide] [supp] [bibtex]

This repo provides the implementation of paper "Deep Structured Instance Graph for Distilling Object Detectors"(Dsig) based on detectron2. Specifically, aiming at solving the feature imbalance problem while further excavating the missing relation inside semantic instances, we design a graph whose nodes correspond to instance proposal-level features and edges represent the relation between nodes. We achieve new state-of-the-art results on the COCO object detection task with diverse student-teacher pairs on both one- and two-stage detectors.

Installation

Requirements

  • Python >= 3.6
  • Pytorch >= 1.7.0
  • Torchvision >= 0.8.1
  • Pycocotools 2.0.2

Follow the install instructions in detectron2, note that in this repo we use detectron2 commit version ff638c931d5999f29c22c1d46a3023e67a5ae6a1. Download COCO dataset and export DETECTRON2_DATASETS=$COCOPATH to direct to COCO dataset. We prepare our pre-trained weights for training in Student-Teacher format, please follow the instructions in Pretrained.

Running

We prepare training configs following the detectron2 format. For training a Faster R-CNN R18-FPN student with a Faster R-CNN R50-FPN teacher on 4 GPUs:

./start_train.sh train projects/Distillation/configs/Distillation-FasterRCNN-R18-R50-dsig-1x.yaml

For testing:

./start_train.sh eval projects/Distillation/configs/Distillation-FasterRCNN-R18-R50-dsig-1x.yaml

For debugging:

./start_train.sh debugtrain projects/Distillation/configs/Distillation-FasterRCNN-R18-R50-dsig-1x.yaml

Results and Models

Faster R-CNN:

Experiment(Student-Teacher) Schedule AP Config Model
R18-R50 1x 37.25 config googledrive
R50-R101 1x 40.57 config googledrive
R101-R152 1x 41.65 config googledrive
MNV2-R50 1x 34.44 config googledrive
EB0-R101 1x 37.74 config googledrive

RetinaNet:

Experiment(Student-Teacher) Schedule AP Config Model
R18-R50 1x 34.72 config googledrive
MNV2-R50 1x 32.16 config googledrive
EB0-R101 1x 34.44 config googledrive

More models and results will be released soon.

Citation

@inproceedings{chen2021dsig,
    title={Deep Structured Instance Graph for Distilling Object Detectors},
    author={Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, and Jiaya Jia},
    booktitle={IEEE International Conference on Computer Vision (ICCV)},
    year={2021},
}

Contact

Please contact [email protected].

Owner
DV Lab
Deep Vision Lab
DV Lab
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

Haoyu Xu 203 Jan 03, 2023
End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

PDVC Official implementation for End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021) [paper] [valse论文速递(Chinese)] This repo supports:

Teng Wang 118 Dec 16, 2022
A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.

Omni-swarm A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swarm Introduction Omni-swarm is a decentralized omn

HKUST Aerial Robotics Group 99 Dec 23, 2022
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Datasets"

Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Data

2 Oct 06, 2022
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
An implementation of the AdaOPS (Adaptive Online Packing-based Search), which is an online POMDP Solver used to solve problems defined with the POMDPs.jl generative interface.

AdaOPS An implementation of the AdaOPS (Adaptive Online Packing-guided Search), which is an online POMDP Solver used to solve problems defined with th

9 Oct 05, 2022
SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

Sara Ahmed 275 Dec 28, 2022
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022
Implementation of GGB color space

GGB Color Space This package is implementation of GGB color space from Development of a Robust Algorithm for Detection of Nuclei and Classification of

Resha Dwika Hefni Al-Fahsi 2 Oct 06, 2021
This repository contains the implementation of the paper: "Towards Frequency-Based Explanation for Robust CNN"

RobustFreqCNN About This repository contains the implementation of the paper "Towards Frequency-Based Explanation for Robust CNN" arxiv. It primarly d

Sarosij Bose 2 Jan 23, 2022
Code for One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022)

One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022) Paper | Demo Requirements Python = 3.6 , Pytorch

FuxiVirtualHuman 84 Jan 03, 2023
Learning to Segment Instances in Videos with Spatial Propagation Network

Learning to Segment Instances in Videos with Spatial Propagation Network This paper is available at the 2017 DAVIS Challenge website. Check our result

Jingchun Cheng 145 Sep 28, 2022
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
Official Implementation of Swapping Autoencoder for Deep Image Manipulation (NeurIPS 2020)

Swapping Autoencoder for Deep Image Manipulation Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A. Efros, Richard Zhang UC

449 Dec 27, 2022
A repository for the paper "Improved Adversarial Systems for 3D Object Generation and Reconstruction".

Improved Adversarial Systems for 3D Object Generation and Reconstruction: This is a repository for the paper "Improved Adversarial Systems for 3D Obje

Edward Smith 188 Dec 25, 2022
MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens

MSG-Transformer Official implementation of the paper MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens, by Jiemin

Hust Visual Learning Team 68 Nov 16, 2022