Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow.

Overview

logo

Pypi version Python3 version MIT License total stats download stats / month discord


Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow.

Documentation

Proper documentation is available at https://malaya-speech.readthedocs.io/

Installing from the PyPI

CPU version

$ pip install malaya-speech

GPU version

$ pip install malaya-speech[gpu]

Only Python 3.6.0 and above and Tensorflow 1.15.0 and above are supported.

We recommend to use virtualenv for development. All examples tested on Tensorflow version 1.15.4, 1.15.5, 2.4.1 and 2.5.

Features

  • Age Detection, detect age in speech using Finetuned Speaker Vector.
  • Speaker Diarization, diarizing speakers using Pretrained Speaker Vector.
  • Emotion Detection, detect emotions in speech using Finetuned Speaker Vector.
  • Force Alignment, generate a time-aligned transcription of an audio file using RNNT.
  • Gender Detection, detect genders in speech using Finetuned Speaker Vector.
  • Language Detection, detect hyperlocal languages in speech using Finetuned Speaker Vector.
  • Multispeaker Separation, Multispeaker separation using FastSep on 8k Wav.
  • Noise Reduction, reduce multilevel noises using STFT UNET.
  • Speaker Change, detect changing speakers using Finetuned Speaker Vector.
  • Speaker overlap, detect overlap speakers using Finetuned Speaker Vector.
  • Speaker Vector, calculate similarity between speakers using Pretrained Speaker Vector.
  • Speech Enhancement, enhance voice activities using Waveform UNET.
  • SpeechSplit Conversion, detailed speaking style conversion by disentangling speech into content, timbre, rhythm and pitch using PyWorld and PySPTK.
  • Speech-to-Text, End-to-End Speech to Text for Malay, Mixed (Malay, Singlish and Mandarin) and Singlish using RNNT and Wav2Vec2 CTC.
  • Super Resolution, Super Resolution 4x for Waveform.
  • Text-to-Speech, Text to Speech for Malay and Singlish using Tacotron2, FastSpeech2 and FastPitch.
  • Vocoder, convert Mel to Waveform using MelGAN, Multiband MelGAN and Universal MelGAN Vocoder.
  • Voice Activity Detection, detect voice activities using Finetuned Speaker Vector.
  • Voice Conversion, Many-to-One, One-to-Many, Many-to-Many, and Zero-shot Voice Conversion.
  • Hybrid 8-bit Quantization, provide hybrid 8-bit quantization for all models to reduce inference time up to 2x and model size up to 4x.

Pretrained Models

Malaya-Speech also released pretrained models, simply check at malaya-speech/pretrained-model

References

If you use our software for research, please cite:

@misc{Malaya, Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow,
  author = {Husein, Zolkepli},
  title = {Malaya-Speech},
  year = {2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/huseinzol05/malaya-speech}}
}

Acknowledgement

Thanks to KeyReply for sponsoring private cloud to train Malaya-Speech models, without it, this library will collapse entirely.

logo
You might also like...
ExKaldi-RT: An Online Speech Recognition Extension Toolkit of Kaldi

ExKaldi-RT is an online ASR toolkit for Python language. It reads realtime streaming audio and do online feature extraction, probability computation, and online decoding.

IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models
IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models

IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models. Everything is pure Python and PyTorch based to keep it as simple and beginner-friendly, yet powerful as possible.

Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

text to speech toolkit. 好用的中文语音合成工具箱,包含语音编码器、语音合成器、声码器和可视化模块。
text to speech toolkit. 好用的中文语音合成工具箱,包含语音编码器、语音合成器、声码器和可视化模块。

ttskit Text To Speech Toolkit: 语音合成工具箱。 安装 pip install -U ttskit 注意 可能需另外安装的依赖包:torch,版本要求torch=1.6.0,=1.7.1,根据自己的实际环境安装合适cuda或cpu版本的torch。 ttskit的

PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit.
PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit.

PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit. It provides easy-to-use, low-overhead, first-class Python wrappers for t

HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools

HuggingSound HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools. I have no intention of building a very complex tool here.

Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.

Tevatron Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized

Releases(1.3.0)
  • 1.3.0(Sep 18, 2022)

    1. Added GPT2 LM combined with pyctcdecoder, https://malaya-speech.readthedocs.io/en/latest/gpt2-lm.html
    2. Added Mask LM combined with pyctcdecoder, https://malaya-speech.readthedocs.io/en/latest/masked-lm.html
    3. Added Transducer with GPT2 LM beam decoder, https://malaya-speech.readthedocs.io/en/latest/load-stt-transducer-model-lm-gpt2.html
    4. Added Transducer with Mask LM beam decoder, https://malaya-speech.readthedocs.io/en/latest/load-stt-transducer-model-lm-gpt2.html
    5. Added GPT2 LM CTC decoder, https://malaya-speech.readthedocs.io/en/latest/load-stt-ctc-model-pyctcdecode-gpt2.html
    6. Added Mask LM CTC decoder, https://malaya-speech.readthedocs.io/en/latest/load-stt-ctc-model-pyctcdecode-mlm.html
    7. Added Squeezeformer transducer models.
    8. Added End-to-End FastSpeech2 STT models, no longer required a vocoder, https://malaya-speech.readthedocs.io/en/latest/tts-e2e-fastspeech2.html
    9. Added End-to-End VITS STT models, no longer required a vocoder, https://malaya-speech.readthedocs.io/en/latest/tts-vits.html
    10. Added Neural Vocoder Super Resolution models, https://malaya-speech.readthedocs.io/en/latest/load-super-resolution-tfgan.html
    11. Added super resolution diffusion models, https://malaya-speech.readthedocs.io/en/latest/load-super-resolution-audio-diffusion.html
    12. Added HMM speaker diarization, https://malaya-speech.readthedocs.io/en/latest/load-diarization-clustering-hmm.html
    Source code(tar.gz)
    Source code(zip)
  • 1.2.7(Jun 13, 2022)

    1. Added Speech-to-Text HuggingFace using Mesolitica finetuned models, https://huggingface.co/mesolitica, https://malaya-speech.readthedocs.io/en/latest/stt-huggingface.html
    2. Added Force Alignment HuggingFace using Mesolitica finetuned models, https://huggingface.co/mesolitica, https://malaya-speech.readthedocs.io/en/latest/stt-huggingface.html
    3. Added Text-to-Speech LightSpeech, https://arxiv.org/abs/2102.04040, https://malaya-speech.readthedocs.io/en/latest/tts-lightspeech-model.html
    4. Now Transducer LM support multi-languages.
    Source code(tar.gz)
    Source code(zip)
  • 1.2.6(May 6, 2022)

    1. Use HuggingFace as backend repository.
    2. Added yasmin and osman speakers for TTS Tacotron2, https://malaya-speech.readthedocs.io/en/latest/tts-tacotron2-model.html
    3. Added yasmin and osman speakers for TTS FastSpeech2, https://malaya-speech.readthedocs.io/en/latest/tts-fastspeech2-model.html
    4. Added yasmin and osman speakers for TTS GlowTTS, https://malaya-speech.readthedocs.io/en/latest/tts-glowtts-model.html
    5. Use yasmin and osman speakers for long text TTS, https://malaya-speech.readthedocs.io/en/latest/tts-long-text.html
    Source code(tar.gz)
    Source code(zip)
  • 1.2.5(Mar 20, 2022)

  • 1.2.4(Mar 1, 2022)

    1. Added malay language pretrained BEST-RQ models, https://github.com/huseinzol05/malaya-speech/tree/master/pretrained-model/stt/best_rq
    2. Added BEST-RQ STT, https://malaya-speech.readthedocs.io/en/latest/load-stt-ctc-model.html#List-available-CTC-model
    Source code(tar.gz)
    Source code(zip)
  • 1.2.2(Dec 29, 2021)

  • 1.2.1(Dec 2, 2021)

    1. Added more KenLM models, included Malay + Singlish, https://malaya-speech.readthedocs.io/en/latest/ctc-language-model.html
    2. Improved ASR CTC models, Hubert-Conformer-Large achieved 12.8% WER-LM, 3.8% CER-LM, https://malaya-speech.readthedocs.io/en/latest/load-stt-ctc-model.html
    3. Added CTC Decoders interface for ASR CTC models, https://malaya-speech.readthedocs.io/en/latest/load-stt-ctc-model-ctc-decoders.html
    4. Added pyctcdecode interface for ASR CTC models, https://malaya-speech.readthedocs.io/en/latest/load-stt-ctc-model-pyctcdecode.html
    5. Improved ASR RNNT models, large-conformer achieved 14.8% WER-LM, 5.9% CER-LM, https://malaya-speech.readthedocs.io/en/latest/load-stt-transducer-model.html
    6. Added KenLM support for ASR RNNT models, https://malaya-speech.readthedocs.io/en/latest/load-stt-transducer-model-lm.html
    7. Added ASR RNNT for 2 mixed languages, Malay and Singlish, https://malaya-speech.readthedocs.io/en/latest/load-stt-transducer-model-lm.html#
    8. Added ASR RNNT for 3 mixed languages, Malay, Singlish and Mandarin, https://malaya-speech.readthedocs.io/en/latest/load-stt-transducer-model-3mixed.html
    9. Added GlowTTS Text-to-Speech, https://malaya-speech.readthedocs.io/en/latest/tts-glowtts-model.html
    10. Added GlowTTS Text-to-Speech Multispeakers, https://malaya-speech.readthedocs.io/en/latest/tts-glowtts-multispeaker-model.html
    11. Added HiFiGAN Vocoder, https://malaya-speech.readthedocs.io/en/latest/load-vocoder.html
    12. Added Universal HiFiGAN Vocoder, https://malaya-speech.readthedocs.io/en/latest/load-universal-hifigan.html
    Source code(tar.gz)
    Source code(zip)
  • 1.2(Oct 2, 2021)

    1. Added HuBERT, https://malaya-speech.readthedocs.io/en/latest/load-stt-ctc-model.html, new SOTA on Malay CER.
    2. Improved Singlish TTS model, now supported Universal MelGAN as vocoder, https://malaya-speech.readthedocs.io/en/latest/tts-singlish.html
    3. Added Force Alignment module, now you can generate a time-aligned for your transcription, https://malaya-speech.readthedocs.io/en/latest/force-alignment.html
    4. Improved Mixed STT Transducer models, https://malaya-speech.readthedocs.io/en/latest/load-stt-transducer-model-mixed.html
    5. Add new Mixed STT SOTA models, called conformer-stack-mixed, 2% better than other Mixed STT models, no paper produced, https://malaya-speech.readthedocs.io/en/latest/load-stt-transducer-model-mixed.html#List-available-RNNT-model
    6. Add Singlish STT Transducer models, thanks to Singapore National Speech Corpus for the dataset, https://www.imda.gov.sg/programme-listing/digital-services-lab/national-speech-corpus, https://malaya-speech.readthedocs.io/en/latest/load-stt-transducer-model-singlish.html
    Source code(tar.gz)
    Source code(zip)
  • 1.1.1(Jun 29, 2021)

    1. Improved Bahasa Speech-to-Text, Large Conformer beat Google Speech-to-Text accuracy.
    2. Improved Mixed (malay and singlish) Speech-to-Text.
    3. Added real time Mixed (malay and singlish) Speech-to-Text documentation, https://malaya-speech.readthedocs.io/en/latest/realtime-asr-mixed.html
    Source code(tar.gz)
    Source code(zip)
  • 1.1(Jun 1, 2021)

  • 1.0(Apr 18, 2021)

Owner
HUSEIN ZOLKEPLI
I really love to fart and korek hidung.
HUSEIN ZOLKEPLI
DaCy: The State of the Art Danish NLP pipeline using SpaCy

DaCy: A SpaCy NLP Pipeline for Danish DaCy is a Danish preprocessing pipeline trained in SpaCy. At the time of writing it has achieved State-of-the-Ar

Kenneth Enevoldsen 71 Jan 06, 2023
Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021.

capbot-siic Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021. Problem Inspiration A plethora

Aryan Kargwal 19 Feb 17, 2022
edge-SR: Super-Resolution For The Masses

edge-SR: Super Resolution For The Masses Citation Pablo Navarrete Michelini, Yunhua Lu and Xingqun Jiang. "edge-SR: Super-Resolution For The Masses",

Pablo 40 Nov 10, 2022
ChessCoach is a neural network-based chess engine capable of natural-language commentary.

ChessCoach is a neural network-based chess engine capable of natural-language commentary.

Chris Butner 380 Dec 03, 2022
A Facebook Messenger Chatbot using NLP

A Facebook Messenger Chatbot using NLP This project is about creating a messenger chatbot using basic NLP techniques and models like Logistic Regressi

6 Nov 20, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Phil Wang 5k Jan 02, 2023
Fuzzy String Matching in Python

FuzzyWuzzy Fuzzy string matching like a boss. It uses Levenshtein Distance to calculate the differences between sequences in a simple-to-use package.

SeatGeek 8.8k Jan 01, 2023
NLP command-line assistant powered by OpenAI

NLP command-line assistant powered by OpenAI

Axel 16 Dec 09, 2022
Extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset

Housegan-data-reader House-GAN++ (data-reader) Code and instructions for converting rplan dataset (raster images) to housegan++ data format. House-GAN

Sepid Hosseini 13 Nov 24, 2022
Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings of ACL: ACL 2021)

BERT-for-Surprisal Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings

7 Dec 05, 2022
gaiic2021-track3-小布助手对话短文本语义匹配复赛rank3、决赛rank4

决赛答辩已经过去一段时间了,我们队伍ac milan最终获得了复赛第3,决赛第4的成绩。在此首先感谢一些队友的carry~ 经过2个多月的比赛,学习收获了很多,也认识了很多大佬,在这里记录一下自己的参赛体验和学习收获。

102 Dec 19, 2022
Word Bot for JKLM Bomb Party

Word Bot for JKLM Bomb Party A bot for Bomb Party on https://www.jklm.fun (Only English) Requirements pynput pyperclip pyautogui Usage: Step 1: Run th

Nicolas 7 Oct 30, 2022
2021 AI CUP Competition on Traditional Chinese Scene Text Recognition - Intermediate Contest

繁體中文場景文字辨識 程式碼說明 組別:這就是我 成員:蔣明憲 唐碩謙 黃玥菱 林冠霆 蕭靖騰 目錄 環境套件 安裝方式 資料夾布局 前處理-製作偵測訓練註解檔 前處理-製作分類訓練樣本 part.py : 從 json 裁切出分類訓練樣本 Class.py : 將切出來的樣本按照文字分類到各資料夾

HuanyueTW 3 Jan 14, 2022
Natural Language Processing library built with AllenNLP 🌲🌱

Custom Natural Language Processing with big and small models 🌲🌱

Recognai 65 Sep 13, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN

artificial intelligence cosmic love and attention fire in the sky a pyramid made of ice a lonely house in the woods marriage in the mountains lantern

Phil Wang 2.3k Jan 01, 2023
The ability of computer software to identify words and phrases in spoken language and convert them to human-readable text

speech-recognition-py Speech recognition is the ability of computer software to identify words and phrases in spoken language and convert them to huma

Deepangshi 1 Apr 03, 2022
CCKS-Title-based-large-scale-commodity-entity-retrieval-top1

- 基于标题的大规模商品实体检索top1 一、任务介绍 CCKS 2020:基于标题的大规模商品实体检索,任务为对于给定的一个商品标题,参赛系统需要匹配到该标题在给定商品库中的对应商品实体。 输入:输入文件包括若干行商品标题。 输出:输出文本每一行包括此标题对应的商品实体,即给定知识库中商品 ID,

43 Nov 11, 2022
Code Implementation of "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE: Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction ***** New March 31th, 2022: Scikit-Style API for Easy Usage *****

Chia Yew Ken 111 Dec 23, 2022
Unsupervised Abstract Reasoning for Raven’s Problem Matrices

Unsupervised Abstract Reasoning for Raven’s Problem Matrices This code is the implementation of our TIP paper. This is the first unsupervised abstract

Tao Zhuo 9 Dec 17, 2022
Tools for curating biomedical training data for large-scale language modeling

Tools for curating biomedical training data for large-scale language modeling

BigScience Workshop 242 Dec 25, 2022