Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

Related tags

Deep LearningHAIS
Overview

HAIS

PWC PWC

Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresponding author. [arXiv]


Introduction

  • HAIS is an efficient and concise bottom-up framework (NMS-free and single-forward) for point cloud instance segmentation. It adopts the hierarchical aggregation (point aggregation and set aggregation) to generate instances and the intra-instance prediction for outlier filtering and mask quality scoring.

Framework

Learderboard

  • High speed. Thanks to the NMS-free and single-forward inference design, HAIS achieves the best inference speed among all existing methods. HAIS only takes 206 ms on RTX 3090 and 339 ms on TITAN X.
Method Per-frame latency on TITAN X
ASIS 181913 ms
SGPN 158439 ms
3D-SIS 124490 ms
GSPN 12702 ms
3D-BoNet 9202 ms
GICN 8615 ms
OccuSeg 1904 ms
PointGroup 452 ms
HAIS 339 ms

[ICCV21 presentation]

Update

2021.9.30:

  • Code is released.
  • With better CUDA optimization, HAIS now only takes 339 ms on TITAN X, much better than the latency reported in the paper (410 ms on TITAN X).

Installation

1) Environment

  • Python 3.x
  • Pytorch 1.1 or higher
  • CUDA 9.2 or higher
  • gcc-5.4 or higher

Create a conda virtual environment and activate it.

conda create -n hais python=3.7
conda activate hais

2) Clone the repository.

git clone https://github.com/hustvl/HAIS.git --recursive

3) Install the requirements.

cd HAIS
pip install -r requirements.txt
conda install -c bioconda google-sparsehash 

4) Install spconv

  • Verify the version of spconv.

    spconv 1.0, compatible with CUDA < 11 and pytorch < 1.5, is already recursively cloned in HAIS/lib/spconv in step 2) by default.

    For higher version CUDA and pytorch, spconv 1.2 is suggested. Replace HAIS/lib/spconv with this fork of spconv.

git clone https://github.com/outsidercsy/spconv.git --recursive
  Note:  In the provided spconv 1.0 and 1.2, spconv\spconv\functional.py is modified to make grad_output contiguous. Make sure you use the modified spconv but not the original one. Or there would be some bugs of optimization.
  • Install the dependent libraries.
conda install libboost
conda install -c daleydeng gcc-5 # (optional, install gcc-5.4 in conda env)
  • Compile the spconv library.
cd HAIS/lib/spconv
python setup.py bdist_wheel
  • Intall the generated .whl file.
cd HAIS/lib/spconv/dist
pip install {wheel_file_name}.whl

5) Compile the external C++ and CUDA ops.

cd HAIS/lib/hais_ops
export CPLUS_INCLUDE_PATH={conda_env_path}/hais/include:$CPLUS_INCLUDE_PATH
python setup.py build_ext develop

{conda_env_path} is the location of the created conda environment, e.g., /anaconda3/envs.

Data Preparation

1) Download the ScanNet v2 dataset.

2) Put the data in the corresponding folders.

  • Copy the files [scene_id]_vh_clean_2.ply, [scene_id]_vh_clean_2.labels.ply, [scene_id]_vh_clean_2.0.010000.segs.json and [scene_id].aggregation.json into the dataset/scannetv2/train and dataset/scannetv2/val folders according to the ScanNet v2 train/val split.

  • Copy the files [scene_id]_vh_clean_2.ply into the dataset/scannetv2/test folder according to the ScanNet v2 test split.

  • Put the file scannetv2-labels.combined.tsv in the dataset/scannetv2 folder.

The dataset files are organized as follows.

HAIS
├── dataset
│   ├── scannetv2
│   │   ├── train
│   │   │   ├── [scene_id]_vh_clean_2.ply & [scene_id]_vh_clean_2.labels.ply & [scene_id]_vh_clean_2.0.010000.segs.json & [scene_id].aggregation.json
│   │   ├── val
│   │   │   ├── [scene_id]_vh_clean_2.ply & [scene_id]_vh_clean_2.labels.ply & [scene_id]_vh_clean_2.0.010000.segs.json & [scene_id].aggregation.json
│   │   ├── test
│   │   │   ├── [scene_id]_vh_clean_2.ply 
│   │   ├── scannetv2-labels.combined.tsv

3) Generate input files [scene_id]_inst_nostuff.pth for instance segmentation.

cd HAIS/dataset/scannetv2
python prepare_data_inst.py --data_split train
python prepare_data_inst.py --data_split val
python prepare_data_inst.py --data_split test

Training

CUDA_VISIBLE_DEVICES=0 python train.py --config config/hais_run1_scannet.yaml 

Inference

1) To evaluate on validation set,

  • prepare the .txt instance ground-truth files as the following.
cd dataset/scannetv2
python prepare_data_inst_gttxt.py
  • set split and eval in the config file as val and True.

  • Run the inference and evaluation code.

CUDA_VISIBLE_DEVICES=0 python test.py --config config/hais_run1_scannet.yaml --pretrain $PATH_TO_PRETRAIN_MODEL$

Pretrained model: Google Drive / Baidu Cloud [code: sh4t]. mAP/mAP50/mAP25 is 44.1/64.4/75.7.

2) To evaluate on test set,

  • Set (split, eval, save_instance) as (test, False, True).
  • Run the inference code. Prediction results are saved in HAIS/exp by default.
CUDA_VISIBLE_DEVICES=0 python test.py --config config/hais_run1_scannet.yaml --pretrain $PATH_TO_PRETRAIN_MODEL$

Visualization

We provide visualization tools based on Open3D (tested on Open3D 0.8.0).

pip install open3D==0.8.0
python visualize_open3d.py --data_path {} --prediction_path {} --data_split {} --room_name {} --task {}

Please refer to visualize_open3d.py for more details.

Acknowledgement

The code is based on PointGroup and spconv.

Contact

If you have any questions or suggestions about this repo, please feel free to contact me ([email protected]).

Citation

@InProceedings{Chen_2021_ICCV,
    author    = {Chen, Shaoyu and Fang, Jiemin and Zhang, Qian and Liu, Wenyu and Wang, Xinggang},
    title     = {Hierarchical Aggregation for 3D Instance Segmentation},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {15467-15476}
}
Owner
Hust Visual Learning Team
Hust Visual Learning Team belongs to the Artificial Intelligence Research Institute in the School of EIC in HUST
Hust Visual Learning Team
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Learning and Building Convolutional Neural Networks using PyTorch

Image Classification Using Deep Learning Learning and Building Convolutional Neural Networks using PyTorch. Models, selected are based on number of ci

Mayur 126 Dec 22, 2022
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
Official implementation of the ICLR 2021 paper

You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S

Bosch Research 272 Dec 28, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
Deep Latent Force Models

Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona

Tom McDonald 5 Oct 26, 2022
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
Speech-Emotion-Analyzer - The neural network model is capable of detecting five different male/female emotions from audio speeches. (Deep Learning, NLP, Python)

Speech Emotion Analyzer The idea behind creating this project was to build a machine learning model that could detect emotions from the speech we have

Mitesh Puthran 965 Dec 24, 2022
Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”. Introduction Based

96 Dec 13, 2022
Simple implementation of OpenAI CLIP model in PyTorch.

It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP mod

Moein Shariatnia 226 Jan 05, 2023
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
Event-forecasting - Event Forecasting Algorithms With Python

event-forecasting Event Forecasting Algorithms Theory Correlating events in comp

Intellia ICT 4 Feb 15, 2022
Learnable Motion Coherence for Correspondence Pruning

Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi

liuyuan 41 Nov 30, 2022
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023
A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities

MPT A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities. Implementation for our AAAI 2022 paper: Multi-

yidiLi 4 May 08, 2022
HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.

HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps. 中文介绍 Features Non-intrusive. Your iOS project does not need to be modi

mao2020 47 Oct 22, 2022
FastyAPI is a Stack boilerplate optimised for heavy loads.

FastyAPI A FastAPI based Stack boilerplate for heavy loads. Explore the docs » View Demo · Report Bug · Request Feature Table of Contents About The Pr

Ali Chaayb 47 Dec 27, 2022
Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Gopalika Sharma 1 Nov 08, 2021