Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Overview

Attack_classification_models_with_transferability

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击, 决赛第四名(team name: Advers)

详细方案介绍

1. Prerequisites

1. python >= 3.6
2. pytorch >= 1.2.0
3. torchvision >= 0.4.0 
4. numpy >= 1.19.1
5. pillow >= 7.2.0
6. scipy >= 1.5.2

2. Code Overview

  • ./codes/

    • main.py: 攻击原始图像,生成并保存攻击后的图像
    • data.py: 加载原始图像,保存图像,图像标准化处理
    • model.py: 模型集成,利用集成模型计算logits
    • utils.py: Input Diversity, 高斯平滑处理等
  • ./input_dir/

    • ./images/: 原始图像所在路径
    • ./dev.csv:图像的标记文件(images name, true label)
  • demo

python main.py --source_model 'resnet50'

3. 思路

  • 本文分享我们团队(Advers)的解决方案,欢迎大家交流讨论,一起进步。
  • 本方案最终得分:9081.6, 线上后台模型攻击成功率:95.48%,决赛排名:TOP 4
  • 本方案初赛排名:TOP 4,复赛排名:TOP 10

3.1 赛题分析

  1. 无限制对抗攻击可以用不同的方法来实现,包括范数扰动攻击、GAN、粘贴Patch等。但是由于 fid、lpips 两个指标的限制,必须保证生成的图像质量好(不改变语义、噪声尽量小),否则得分会很低。经过尝试,我们最终确定利用范数扰动来进行迁移攻击,这样可以较好地平衡攻击成功率和图像质量。

  2. 由于无法获取后台模型的任何参数和输出,甚至不知道后台分类模型输入图像大小,这增加了攻击难度。原图大小是 500 * 500,而 ImageNet 分类模型输入是 224 * 224 或 299 * 299,对生成的对抗样本图像 resize会导致对抗样本的攻击性降低。

  3. 由于比赛最终排名为人工打分,所以没有用损失函数去拟合 fid、lpips 两个指标。

  4. 对抗样本的攻击性和图像质量可以说是两个相互矛盾的指标,一个指标的提升往往会导致另一个指标的下降,如何在对抗性和图像质量两个方面找到一个平衡点是十分重要的。在机器打分阶段,采用较小的噪声,把噪声加在图像敏感区域,在尽量不降低攻击性的前提下提升对抗样本的图像质量是得分的关键

3.2 解题思路

3.2.1 输入模型的图像大小

本次比赛的图像被 resize 到了 500 * 500 大小,而标准的 ImageNet 预训练模型输入大小一般是 224 * 224 或 299 * 299。我们尝试将不同大小的图片(500,299,224)输入到模型中进行攻击,发现 224 大小的效果最好,计算复杂度也最低。

3.2.2 L2 or Linf

采用 L2 范数攻击生成的对抗样本的攻击性要强一些,但可能会出现比较大的噪声斑块,导致人眼看起来比较奇怪,采用 Linf 范数生成的对抗样本,人眼视觉上要稍好一些。在机器打分阶段,采用 L2 范数扰动攻击,在人工评判阶段,采用 Linf 范数扰动来生成对抗样本。

3.2.3 提升对抗样本迁移性方法

1. MI-FGSM1:在机器打分阶段采用 MI-FGSM 算法生成噪声,但是 MI-FGSM 算法生成的噪声人眼看起来会明显,由于决赛阶段是人工打分,最终舍弃了该方法。

2. Translation-Invariant(TI)2:用核函数对计算得到的噪声梯度进行平滑处理,提升了噪声的泛化性。

3. Input Diversity(DI)3 :通过增加输入图像的多样性来提高对抗样本的迁移性,其提分效果明显。Input Diversity 本质是通过变换输入图像的多样性让噪声不完全依赖相应的像素点,减少了噪声过拟合效应,提高了泛化性和迁移性。

3.2.4 改进后的DI攻击

Input Diversity 会对图像进行随机变换,导致生成的噪声梯度带有一定的随机性。虽然这种随机性可以使对抗样本的泛化性更强,但是也会引入一定比例的噪声,这种噪声也会抑制对抗样本的泛化性,因此如何消除 DI 随机性带来的噪声影响,同时保证攻击具有较强的泛化性是提升迁移性的有效手段。

image

3.2.5 Tricks

  • 在初赛和复赛阶段,采用 L2 和 Linf 范数扰动攻击,其中 L2 范数扰动攻击得分更高一些。由于复赛阶段线上模型比较鲁棒,所以适当增加扰动范围是提升攻击成功率的关键。
  • 考虑到决赛阶段是人工打分,需要考虑攻击性和图像质量,我们最终采用 Linf 范数扰动进行攻击,扰动大小设为 32/255,迭代次数设为 40,迭代步长设为 1/255。
  • 攻击之前,对图像进行高斯平滑处理,可以提升攻击效果,但是也会让图像变模糊。
  • Ensemble models: resnet50、densenet161、inceptionv4等。

4. 攻击结果

image

多次实验表明,采用改进的 DI+TI 攻击方法得到的噪声相对于 MI-FGSM 方法更小,泛化性和迁移性更强,同时人眼视觉效果也比较好。

5. 参考文献

  1. Dong Y, Liao F, Pang T, et al. Boosting adversarial attacks with momentum. CVPR 2018.
  2. Dong Y, Pang T, Su H, et al. Evading defenses to transferable adversarial examples by translation-invariant attacks. CVPR 2019.
  3. Xie C, Zhang Z, Zhou Y, et al. Improving transferability of adversarial examples with input diversity. CVPR 2019.
  4. Wierstra D, Schaul T, Glasmachers T, et al. Natural evolution strategies. The Journal of Machine Learning Research, 2014.

6.致谢

  • 感谢团队每一位小伙伴的辛勤付出,感谢指导老师的大力支持。
  • 感谢阿里安全主办了这次比赛,给了大家交流学习的机会,使得我们结识了很多优秀的小伙伴!

如有问题,欢迎交流:[email protected]

Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
a Lightweight library for sequential learning agents, including reinforcement learning

SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning) TL;DR salina is a lightweight library

Facebook Research 405 Dec 17, 2022
Minecraft Hack Detection With Python

Minecraft Hack Detection An attempt to try and use crowd sourced replays to find

Kuleen Sasse 3 Mar 26, 2022
This repository provides a basic implementation of our GCPR 2021 paper "Learning Conditional Invariance through Cycle Consistency"

Learning Conditional Invariance through Cycle Consistency This repository provides a basic TensorFlow 1 implementation of the proposed model in our GC

BMDA - University of Basel 1 Nov 04, 2022
The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer

ELSA: Enhanced Local Self-Attention for Vision Transformer By Jingkai Zhou, Pich

DamoCV 87 Dec 19, 2022
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
dataset for ECCV 2020 "Motion Capture from Internet Videos"

Motion Capture from Internet Videos Motion Capture from Internet Videos Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao

ZJU3DV 98 Dec 07, 2022
PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

Dynamic Data Augmentation with Gating Networks This is an official PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

九州大学 ヒューマンインタフェース研究室 3 Oct 26, 2022
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
Code for Deep Single-image Portrait Image Relighting

Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for

438 Jan 05, 2023
Tutorial repo for an end-to-end Data Science project

End-to-end Data Science project This is the repo with the notebooks, code, and additional material used in the ITI's workshop. The goal of the session

Deena Gergis 127 Dec 30, 2022
Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Clara Meister 50 Nov 12, 2022
Simple (but Strong) Baselines for POMDPs

Recurrent Model-Free RL is a Strong Baseline for Many POMDPs Welcome to the POMDP world! This repo provides some simple baselines for POMDPs, specific

Tianwei V. Ni 172 Dec 29, 2022
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
Keras Image Embeddings using Contrastive Loss

Image to Embedding projection in vector space. Implementation in keras and tensorflow of batch all triplet loss for one-shot/few-shot learning.

Shravan Anand K 5 Mar 21, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
Galactic and gravitational dynamics in Python

Gala is a Python package for Galactic and gravitational dynamics. Documentation The documentation for Gala is hosted on Read the docs. Installation an

Adrian Price-Whelan 101 Dec 22, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022