Distributed Asynchronous Hyperparameter Optimization in Python

Related tags

Deep Learninghyperopt
Overview

Hyperopt: Distributed Hyperparameter Optimization

Build Status PyPI version Anaconda-Server Badge

Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which may include real-valued, discrete, and conditional dimensions.

Getting started

Install hyperopt from PyPI

$ pip install hyperopt

to run your first example

# define an objective function
def objective(args):
    case, val = args
    if case == 'case 1':
        return val
    else:
        return val ** 2

# define a search space
from hyperopt import hp
space = hp.choice('a',
    [
        ('case 1', 1 + hp.lognormal('c1', 0, 1)),
        ('case 2', hp.uniform('c2', -10, 10))
    ])

# minimize the objective over the space
from hyperopt import fmin, tpe, space_eval
best = fmin(objective, space, algo=tpe.suggest, max_evals=100)

print(best)
# -> {'a': 1, 'c2': 0.01420615366247227}
print(space_eval(space, best))
# -> ('case 2', 0.01420615366247227}

Contributing

Setup (based on this)

If you're a developer and wish to contribute, please follow these steps:

  1. Create an account on GitHub if you do not already have one.

  2. Fork the project repository: click on the ‘Fork’ button near the top of the page. This creates a copy of the code under your account on the GitHub user account. For more details on how to fork a repository see this guide.

  3. Clone your fork of the hyperopt repo from your GitHub account to your local disk:

    $ git clone https://github.com/<github username>/hyperopt.git
    $ cd hyperopt

Setup a python 3.x environment for dependencies

  1. Create environment with:
    $ python3 -m venv my_env or $ python -m venv my_env or with conda:
    $ conda create -n my_env python=3

  2. Activate the environment:
    $ source my_env/bin/activate
    or with conda:
    $ conda activate my_env

  3. Install dependencies for extras (you'll need these to run pytest): Linux/UNIX: $ pip install -e '.[MongoTrials, SparkTrials, ATPE, dev]'

    or Windows:

    pip install -e .[MongoTrials]
    pip install -e .[SparkTrials]
    pip install -e .[ATPE]
    pip install -e .[dev]
  4. Add the upstream remote. This saves a reference to the main hyperopt repository, which you can use to keep your repository synchronized with the latest changes:

    $ git remote add upstream https://github.com/hyperopt/hyperopt.git

    You should now have a working installation of hyperopt, and your git repository properly configured. The next steps now describe the process of modifying code and submitting a PR:

  5. Synchronize your master branch with the upstream master branch:

    $ git checkout master
    $ git pull upstream master
  6. Create a feature branch to hold your development changes:

    $ git checkout -b my_feature

    and start making changes. Always use a feature branch. It’s good practice to never work on the master branch!

Formatting

  1. We recommend to use Black to format your code before submitting a PR which is installed automatically in step 4.

  2. Then, once you commit ensure that git hooks are activated (Pycharm for example has the option to omit them). This will run black automatically on all files you modified, failing if there are any files requiring to be blacked. In case black does not run execute the following:

    $ black {source_file_or_directory}
  3. Develop the feature on your feature branch on your computer, using Git to do the version control. When you’re done editing, add changed files using git add and then git commit:

    $ git add modified_files
    $ git commit -m "my first hyperopt commit"

Running tests

  1. The tests for this project use PyTest and can be run by calling pytest.

  2. Record your changes in Git, then push the changes to your GitHub account with:

    $ git push -u origin my_feature

Note that dev dependencies require python 3.6+.

Algorithms

Currently three algorithms are implemented in hyperopt:

Hyperopt has been designed to accommodate Bayesian optimization algorithms based on Gaussian processes and regression trees, but these are not currently implemented.

All algorithms can be parallelized in two ways, using:

Documentation

Hyperopt documentation can be found here, but is partly still hosted on the wiki. Here are some quick links to the most relevant pages:

Related Projects

Examples

See projects using hyperopt on the wiki.

Announcements mailing list

Announcements

Discussion mailing list

Discussion

Cite

If you use this software for research, please cite the paper (http://proceedings.mlr.press/v28/bergstra13.pdf) as follows:

Bergstra, J., Yamins, D., Cox, D. D. (2013) Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. TProc. of the 30th International Conference on Machine Learning (ICML 2013), June 2013, pp. I-115 to I-23.

Thanks

This project has received support from

  • National Science Foundation (IIS-0963668),
  • Banting Postdoctoral Fellowship program,
  • National Science and Engineering Research Council of Canada (NSERC),
  • D-Wave Systems, Inc.
MoCap-Solver: A Neural Solver for Optical Motion Capture Data

MoCap-Solver is a data-driven-based robust marker denoising method, which takes raw mocap markers as input and outputs corresponding clean markers and skeleton motions.

55 Dec 28, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Bee Lim 625 Dec 30, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
[EMNLP 2021] MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations

MuVER This repo contains the code and pre-trained model for our EMNLP 2021 paper: MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity

24 May 30, 2022
This repository gives an example on how to preprocess the data of the HECKTOR challenge

HECKTOR 2021 challenge This repository gives an example on how to preprocess the data of the HECKTOR challenge. Any other preprocessing is welcomed an

56 Dec 01, 2022
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
🔮 Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
Official repository for the CVPR 2021 paper "Learning Feature Aggregation for Deep 3D Morphable Models"

Deep3DMM Official repository for the CVPR 2021 paper Learning Feature Aggregation for Deep 3D Morphable Models. Requirements This code is tested on Py

38 Dec 27, 2022
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

Sukrut Rao 32 Dec 13, 2022
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
3D cascade RCNN for object detection on point cloud

3D Cascade RCNN This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds. We designed a 3D object detection model

Qi Cai 22 Dec 02, 2022