A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

Overview

ManhattanSLAM

Authors: Raza Yunus, Yanyan Li and Federico Tombari

ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera pose trajectory, a sparse 3D reconstruction (containing point, line and plane features) and a dense surfel-based 3D reconstruction. Further details can be found in the related publication. The code is based on ORB-SLAM2.

ManhattanSLAM

Related Publication:

Raza Yunus, Yanyan Li and Federico Tombari, ManhattanSLAM: Robust Planar Tracking and Mapping Leveraging Mixture of Manhattan Frames, in 2021 IEEE International Conference on Robotics and Automation (ICRA) . PDF.

1. License

ManhattanSLAM is released under a GPLv3 license. For a list of all code/library dependencies (and associated licenses), please see Dependencies.md.

If you use ManhattanSLAM in an academic work, please cite:

@inproceedings{yunus2021manhattanslam,
    author = {R. Yunus, Y. Li and F. Tombari},
    title = {ManhattanSLAM: Robust Planar Tracking and Mapping Leveraging Mixture of Manhattan Frames},
    year = {2021},
    booktitle = {2021 IEEE international conference on Robotics and automation (ICRA)},
}

2. Prerequisites

We have tested the library in Ubuntu 16.04, but it should be easy to compile on other platforms. A powerful computer (e.g. i7) will ensure real-time performance and provide more stable and accurate results. Following is the list of dependecies for ManhattanSLAM and their versions tested by us:

  • OpenCV: 3.3.0
  • PCL: 1.7.2
  • Eigen3: 3.3
  • DBoW2: Included in Thirdparty folder
  • g2o: Included in Thirdparty folder
  • Pangolin
  • tinyply

3. Building and testing

Clone the repository:

git clone https://github.com/razayunus/ManhattanSLAM

There is a script build.sh to build the Thirdparty libraries and ManhattanSLAM. Please make sure you have installed all required dependencies (see section 2). Execute:

cd ManhattanSLAM
chmod +x build.sh
./build.sh

This will create libManhattanSLAM.so in lib folder and the executable manhattan_slam in Example folder.

To test the system:

  1. Download a sequence for one of the following datasets and uncompress it:

  2. Associate RGB images and depth images using the python script associate.py. You can generate an associations file by executing:

python associate.py PATH_TO_SEQUENCE/rgb.txt PATH_TO_SEQUENCE/depth.txt > associations.txt
  1. Execute the following command. Change Config.yaml to ICL.yaml for ICL-NUIM sequences, TAMU.yaml for TAMU RGB-D sequences or TUM1.yaml, TUM2.yaml or TUM3.yaml for freiburg1, freiburg2 and freiburg3 sequences of TUM RGB-D respectively. Change PATH_TO_SEQUENCE_FOLDERto the uncompressed sequence folder. Change ASSOCIATIONS_FILE to the path to the corresponding associations file.
./Example/manhattan_slam Vocabulary/ORBvoc.txt Example/Config.yaml PATH_TO_SEQUENCE_FOLDER ASSOCIATIONS_FILE
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations This is the repository for the paper Consumer Fairness in Recomm

7 Nov 30, 2022
Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces. User Guide archABM is a fast and open source agent-

Vicomtech 10 Dec 05, 2022
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
An example of time series augmentation methods with Keras

Time Series Augmentation This is a collection of time series data augmentation methods and an example use using Keras. News 2020/04/16: Repository Cre

九州大学 ヒューマンインタフェース研究室 229 Jan 02, 2023
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
SplineConv implementation for Paddle.

SplineConv implementation for Paddle This module implements the SplineConv operators from Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Mül

北海若 3 Dec 29, 2021
The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible

pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximat

Relation Therapeutics 95 Dec 27, 2022
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022
Template repository to build PyTorch projects from source on any version of PyTorch/CUDA/cuDNN.

The Ultimate PyTorch Source-Build Template Translations: 한국어 TL;DR PyTorch built from source can be x4 faster than a naïve PyTorch install. This repos

Joonhyung Lee/이준형 651 Dec 12, 2022
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
Utilizes Pose Estimation to offer sprinters cues based on an image of their running form.

Running-Form-Correction Utilizes Pose Estimation to offer sprinters cues based on an image of their running form. How to Run Dependencies You will nee

3 Nov 08, 2022
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
Caffe implementation for Hu et al. Segmentation for Natural Language Expressions

Segmentation from Natural Language Expressions This repository contains the Caffe reimplementation of the following paper: R. Hu, M. Rohrbach, T. Darr

10 Jul 27, 2021
Cache Requests in Deta Bases and Echo them with Deta Micros

Deta Echo Cache Leverage the awesome Deta Micros and Deta Base to cache requests and echo them as needed. Stop worrying about slow public APIs or agre

Gingerbreadfork 8 Dec 07, 2021
imbalanced-DL: Deep Imbalanced Learning in Python

imbalanced-DL: Deep Imbalanced Learning in Python Overview imbalanced-DL (imported as imbalanceddl) is a Python package designed to make deep imbalanc

NTUCSIE CLLab 19 Dec 28, 2022
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes The codes for simu

1 Jan 12, 2022