Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

Overview

RegNet

Designing Network Design Spaces

Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

Paper | Official Implementation

RegNet offer a very nice design space for neural network architectures. RegNet design space consists of networks with simple structure which authors call "Regular" Networks (RegNet). Models in RegNet design space have higher concentration of models that perform well and generalise well. RegNet models are very efficient and run upto 5 times faster than EfficientNet models on GPUs.

Also RegNet models have been used as a backbone in Tesla FSD Stack.

Overview Of AnyNet

  • Main goal of the paper is to help in better understanding of network design and discover principles that generalize across settings.
  • Explore structure aspeck of network design and arrive at low dimensional design space consisting of simple regualar networks
  • Network width and depth can be explained by a quantized linear function.

AnyNet Design Space

The basic structure of models in AnyNet design space consists of a simple Stem which is then followed by the network body that does majority of the computation and a final network head that predicts the class scores. The stem and head networks are kept as simple as possible. The network body consists of 4 stages that operate at progressively lower resolutions.

AnyNet

Structure of network body is determined by block width w, network depth d_i, bottleneck ratio b_i and group widths g. Degrees of freedom at stage 'i' are number of blocks d in each stage, block width w and other block parameters such as stride, padding and so on.

Other models are obtained by refining the design space by adding more constraints on the above parameters. Design space is refined keeping the following things in mind :

  • Simplify structure of design space.
  • Improve the interpretability of design space.
  • Maintain Design space complexity.
  • Maintain model diversity in design space.

AnyNetX

XBlock

  • Uses XBlocks within each block of the network
  • Degrees of freedom in AnyNetX is 16
  • Each network has 4 stages
  • Each stage has 4 parameters (network depth di, block width wi, bottleneck ratio bi, group width gi)
  • bi ∈ {1,2,4}
  • gi ∈ {1,2,3,...,32}
  • wi <= 1024
  • di <= 16

AnyNetX(A)

AnyNetX(A) is same as the above AnyNetX

AnyNetX(B)

In this design space,

  • bottleneck ratio bi is fixed for all stages.
  • performance of models in AnyNetX(B) space is almost equal to AnyNetX(A) in average and best case senarios
  • bi <= 2 seemes to work best.

AnyNetX(C)

In this design space,

  • Shared group width gi for all stages.
  • AnyNetX(C) has 6 fewer degrees of freedom compared to AnyNetX(A)
  • gi > 1 seems to work best

AnyNetX(D)

In AnyNetX(D) design space, authors observed that good networks have increasing stage widths w(i+1) > wi

AnyNetX(E)

In AnyNetX(E) design space, it was observed that as stage widths wi increases, depth di likewise tend to increase except for the last stage.

RegNet

Please refer to Section 3.3 in paper.

Training

Import any of the following variants of RegNet using

from regnet import regnetx_002 as RegNet002
from regnet import Xblock, Yblock # required if you want to use YBlock instead of Xblock. Refer to paper for more details on YBlock

RegNet variants available are:

  • regnetx_002
  • regnetx_004
  • regnetx_006
  • regnetx_008
  • regnetx_016
  • regnetx_032
  • regnetx_040
  • regnetx_064
  • regnetx_080
  • regnetx_120
  • regnetx_160
  • regnetx_320

Import TrainingConfig and Trainer Classes from regnet and use them to train the model as follows

from regnet import TrainingConfig, Trainer

model = RegNet002(block=Xblock, num_classes=10)

training_config = TrainingConfig(max_epochs=10, batch_size=128, learning_rate=3e-4, weight_decay=5e-4, ckpt_path="./regnet.pt")
trainer = Trainer(model = model, train_dataset=train_dataset, test_dataset=test_dataset, config=training_config)
trainer.train()

Note : you need not use TrainingConfig and Trainer classes if you want to write your own training loops. Just importing the respective models would suffice.

TODO

  • Test if model trains when using YBlocks
  • Implement model checkpointing for every 'x' epochs

References

[1] https://github.com/signatrix/regnet

[2] https://github.com/d-li14/regnet.pytorch

@InProceedings{Radosavovic2020,
  title = {Designing Network Design Spaces},
  author = {Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Doll{\'a}r},
  booktitle = {CVPR},
  year = {2020}
}

LICENSE

MIT

Owner
Vishal R
Computer Science Student at PES University.
Vishal R
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
Network Compression via Central Filter

Network Compression via Central Filter Environments The code has been tested in the following environments: Python 3.8 PyTorch 1.8.1 cuda 10.2 torchsu

2 May 12, 2022
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 05, 2022
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
This repository consists of Blender python scripts and corresponding assets to generate variants of the CANDLE dataset

candle-simulator This repository consists of Blender python scripts and corresponding assets to generate variants of the IITH-CANDLE dataset. The rend

1 Dec 15, 2021
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
The source code for Adaptive Kernel Graph Neural Network at AAAI2022

AKGNN The source code for Adaptive Kernel Graph Neural Network at AAAI2022. Please cite our paper if you think our work is helpful to you: @inproceedi

11 Nov 25, 2022
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
CT Based COVID 19 Diagnose by Image Processing and Deep Learning

This project proposed the deep learning and image processing method to undertake the diagnosis on 2D CT image and 3D CT volume.

1 Feb 08, 2022
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022
Official repository for Hierarchical Opacity Propagation for Image Matting

HOP-Matting Official repository for Hierarchical Opacity Propagation for Image Matting 🚧 🚧 🚧 Under Construction 🚧 🚧 🚧 🚧 🚧 🚧   Coming Soon   

Li Yaoyi 54 Dec 30, 2021
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022
Pipeline code for Sequential-GAM(Genome Architecture Mapping).

Sequential-GAM Pipeline code for Sequential-GAM(Genome Architecture Mapping). mapping whole_preprocess.sh include the whole processing of mapping. usa

3 Nov 03, 2022
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
A GridMixup augmentation, inspired by GridMask and CutMix

GridMixup A GridMixup augmentation, inspired by GridMask and CutMix Easy install pip install git+https://github.com/IlyaDobrynin/GridMixup.git Overvie

IlyaDo 42 Dec 28, 2022
Course content and resources for the AIAIART course.

AIAIART course This repo will house the notebooks used for the AIAIART course. Part 1 (first four lessons) ran via Discord in September/October 2021.

Jonathan Whitaker 492 Jan 06, 2023