PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

Related tags

Deep Learningpytorch
Overview

PyTorch-LIT

PyPI version

PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

With the rapid growth of deep learning research, models are becoming increasingly complex in terms of parameters and complexity, making it difficult to run the models on currently available end devices. For example, GPT-J with 6B parameters only needs 24 GB of RAM in full-precision mode to be ready for execution, which may be impossible in most systems; even a powerful GPU like the RTX 2060 with 6 GB of memory can't even contain GPT-J in half-precision mode, making direct inference impossible.

To address this issue when training large models, libraries such as DeepSpeed use offload techniques (e.g., ZeRO) to handle the parameters and make training possible by dividing the weights between devices. In contrast, there is no direct library/framework available for inference.

PyTorch-LIT allows the inference of large models by loading weights as needed from secondary specified memory, which could be disk, CPU, or GPU, allowing the inference of models that do not even fit in the system's main memory simply by trading off time.

Quick Start

  1. Install the library
pip install pytorch-lit
  1. You have to save the model's weight in a way that toolkit can use
from pytorch_lit.export import prepare_params

weights = {} # your model's parameters (state_dict)
# change the directory to save your model and specify data-type
prepare_params(weights, ".models/my-model", dtype="float32")
  1. After preparing the weights, you can infer your model
from pytorch_lit import LitModule

# pass your model construction as a closure, 
# specify weights path and inference device 
model = LitModule.from_params(".models/my-model",
                                  lambda: MyModel(),
                                  device="cuda")
result = model(*arg, **kwargs)
  1. Have fun enjoying the inference of the large model on a lower memory device:)

Examples

The repo's examples directory contains examples. There are currently two examples of GPT-J, one for text generation and the other for extracting hidden states as feature representations.

Development

This is a work in progress that will require further development before it can be considered a stable inference toolkit. Here is a list of potential future developments:

  • Caching and batch loading as many weights as memory allows, with weights being replaced in parallel with future ones (through the order of the execution graph)
  • C++ extension for PyTorch jit, so the solution applies to the majority of production end devices
  • Add functions to make it easier to export large models to onnx or trace with jit
  • Use better and faster format than numpy memmap

Contributions are welcome; to discuss your idea further, open an issue with the discussion tag. Finally, you can submit a pull request to merge your fork.

How does it work?

This implementation was made possible primarily by two ideas:

  • The first issue was that PyTorch initialized the model object's parameters when constructing it, causing the construction to fail when the model couldn't fit into memory. To address this, we proposed temporarily hijacking PyTorch's Parameter class's __new__ method during model construction, allowing us to replace the parameter's tensor with a view from a shared global tensor immediately after creation. By doing so, all parameters use the same shared big tensor as their primary storage, allowing the model to be built and tested with inputs to follow and trace the execution graph.
  • The second issue was the large size of model parameters; in the preparation step, we built a numpy memmap(np.memmap) and saved metadata that provided us with the location of each key in the memmap. This allowed us to read parameters from the memmap as needed. Following that, we use the PyTorch hooks (forward and pre_forward) to load and unload a module's parameters before and after execution.

Citation

Please cite PyTorch-LIT if it helps your research. You can use the following BibTeX entry:

@misc{pytorch_lit,
	title = {PyTorch-LIT},
	author = {Rezaei, Amin},
	howpublished = {\url{github.com/AminRezaei0x443/PyTorch-LIT}},
	year = {2021}
}
You might also like...
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

 WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

this is a lite easy to use virtual keyboard project for anyone to use
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

Code & Models for 3DETR - an End-to-end transformer model for 3D object detection
Code & Models for 3DETR - an End-to-end transformer model for 3D object detection

3DETR: An End-to-End Transformer Model for 3D Object Detection PyTorch implementation and models for 3DETR. 3DETR (3D DEtection TRansformer) is a simp

Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

A repository that shares tuning results of trained models generated by TensorFlow / Keras. Post-training quantization (Weight Quantization, Integer Quantization, Full Integer Quantization, Float16 Quantization), Quantization-aware training. TensorFlow Lite. OpenVINO. CoreML. TensorFlow.js. TF-TRT. MediaPipe. ONNX. [.tflite,.h5,.pb,saved_model,tfjs,tftrt,mlmodel,.xml/.bin, .onnx] An end-to-end PyTorch framework for image and video classification
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Comments
  • RuntimeError : OrderdDict mutated during iteration.

    RuntimeError : OrderdDict mutated during iteration.

    Hi, there are new problems. When the model parameters forward, raise a RuntimeError : OrderdDict mutated during iteration. detail as below: Traceback (most recent call last): File "nlp/rct-FPM-rhino/big_model/predict.py", line 24, in result = model(**tokens) File "miniconda3/envs/rhino/lib/python3.8/site-packages/pytorch_lit/inference.py", line 34, in call return self.forward(*args, **kwargs) File "miniconda3/envs/rhino/lib/python3.8/site-packages/pytorch_lit/inference.py", line 31, in forward return self.module(*args, **kwargs) File "miniconda3/envs/rhino/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1057, in _call_impl for hook in itertools.chain( RuntimeError: OrderedDict mutated during iteration

    enviroments:

    GPU:NVIDIA GeForce 3090 CUDA version 11.4 pip list: certifi 2021.10.8 charset-normalizer 2.0.8 click 8.0.3 filelock 3.4.0 huggingface-hub 0.2.0 idna 3.3 joblib 1.1.0 numpy 1.21.4 packaging 21.3 Pillow 8.4.0 pip 21.2.4 pyparsing 3.0.6 pytorch-lit 0.1.7 PyYAML 6.0 regex 2021.11.10 requests 2.26.0 sacremoses 0.0.46 setuptools 58.0.4 six 1.16.0 tokenizer 3.3.2 tokenizers 0.10.3 torch 1.9.1+cu111 torchaudio 0.8.1 torchvision 0.9.1+cu111 tqdm 4.62.3 transformers 4.12.5 typing_extensions 4.0.1 urllib3 1.26.7

    I think this problem caused by PyTorch hooks (forward and pre_forward) to load and unload a module's parameters before and after execution, when load and unload the parameters,the OrderedDict was be mutated.

    opened by changleilei 9
  • TypeError: <lambda>() missing 1 required positional argument: 'k'

    TypeError: () missing 1 required positional argument: 'k'

    Hello, when i use pytorch-lit prepare a model, got a TypeError as title. The detail as blow:

    File "nlp/rct-FPM-rhino/big_model/prepare_model.py", line 16, in prepare_model prepare_params(model, args.save_path, dtype='float32') File "miniconda3/envs/rhino/lib/python3.8/site-packages/pytorch_lit/export.py", line 19, in prepare_params _params_to_memmap(parameters, path.join(save_dir, "model.bin"), File "miniconda3/envs/rhino/lib/python3.8/site-packages/pytorch_lit/export.py", line 52, in _params_to_memmap param = get_param(k) File "miniconda3/envs/rhino/lib/python3.8/site-packages/pytorch_lit/export.py", line 50, in get_param = lambda key: params"get" TypeError: () missing 1 required positional argument: 'k'

    package list:

    certifi 2021.10.8 numpy 1.21.4 pip 21.2.4 pytorch-lit 0.1.6 setuptools 58.0.4 torch 1.10.0 tqdm 4.62.3 typing_extensions 4.0.1 wheel 0.37.0

    model: gpt-j-6B

    Have any suggesstion? Thanks.

    opened by changleilei 1
  • gpt-j generation speed very low

    gpt-j generation speed very low

    The output of gpt-j is very slow, for a 200 output token generation it takes about 20 minutes, for 2048 it takes more than an hour, this significantly limits any experimentation with the model.

    I checked Gpu utilization during inference which is about 1 percent or 4 percent, and gpu memory usage is below 4GB usage, my system has 8GB Gpu memory, if full Gpu is utilized it may be significantly increase the inference speed

    Are their simple hacks to speedup inference time ?

    opened by usama-ahmedkhan 3
  • Weights file format is changed, function partial_loader fails

    Weights file format is changed, function partial_loader fails

    Hi, thanks for your effort for making it easy to load and do inference from large models. I tried your code on a gpt-j model with different model file format, the weight files of the model are in several .pt files not like a single .bin file which your code function partial_loader() expects, does the code work with multiple weight file ? , how can i change it.

    opened by usama-ahmedkhan 4
Releases(0.1.7)
Owner
Amin Rezaei
Computer Science BSc, Neural Networks Enthusiast
Amin Rezaei
Libraries, tools and tasks created and used at DeepMind Robotics.

Libraries, tools and tasks created and used at DeepMind Robotics.

DeepMind 270 Nov 30, 2022
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
Videocaptioning.pytorch - A simple implementation of video captioning

pytorch implementation of video captioning recommend installing pytorch and pyth

Yiyu Wang 2 Jan 01, 2022
Used to record WKU's utility bills on a regular basis.

WKU水电费小助手 一个用于定期记录WKU水电费的脚本 Looking for English Readme? 背景 由于WKU校园内的水电账单系统时常存在扣费延迟的现象,而补扣的费用缺乏令人信服的证明。不少学生为费用摸不着头脑,但也没有申诉的依据。为了更好地掌握水电费使用情况,留下一手证据,我开源

2 Jul 21, 2022
Development Kit for the SoccerNet Challenge

SoccerNetv2-DevKit Welcome to the SoccerNet-V2 Development Kit for the SoccerNet Benchmark and Challenge. This kit is meant as a help to get started w

Silvio Giancola 117 Dec 30, 2022
Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points Object detection, 3D detection, and pose estimation using center point detection: Objects as Points, Xingyi Zhou, Dequan Wang, Phili

Xingyi Zhou 6.7k Jan 03, 2023
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

3k Jan 08, 2023
Reference code for the paper "Cross-Camera Convolutional Color Constancy" (ICCV 2021)

Cross-Camera Convolutional Color Constancy, ICCV 2021 (Oral) Mahmoud Afifi1,2, Jonathan T. Barron2, Chloe LeGendre2, Yun-Ta Tsai2, and Francois Bleibe

Mahmoud Afifi 76 Jan 07, 2023
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023
[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]

MobileSal IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection This repository contains full training & testing code, and pr

Yu-Huan Wu 52 Jan 06, 2023
Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples"

KSTER Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples" [paper]. Usage Download the processed datas

jiangqn 23 Nov 24, 2022
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte Computer Vision Lab

Kai Zhang 804 Jan 08, 2023
Graph Transformer Architecture. Source code for

Graph Transformer Architecture Source code for the paper "A Generalization of Transformer Networks to Graphs" by Vijay Prakash Dwivedi and Xavier Bres

NTU Graph Deep Learning Lab 561 Jan 08, 2023
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
🇰🇷 Text to Image in Korean

KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo

HappyFace 74 Sep 22, 2022
Streamlit App For Product Analysis - Streamlit App For Product Analysis

Streamlit_App_For_Product_Analysis Здравствуйте! Перед вами дашборд, позволяющий

Grigory Sirotkin 1 Jan 10, 2022