a pytorch implementation of auto-punctuation learned character by character

Overview

Learning Auto-Punctuation by Reading Engadget Articles

DOI

Link to Other of my work

๐ŸŒŸ Deep Learning Notes: A collection of my notes going from basic multi-layer perceptron to convNet and LSTMs, Tensorflow to pyTorch.

๐Ÿ’ฅ Deep Learning Papers TLDR; A growing collection of my notes on deep learning papers! So far covers the top papers from this years ICLR.

Overview

This project trains a bi-directional GRU to learn how to automatically punctuate a sentence by reading blog posts from Engadget.com character by character. The set of operation it learns include:

capitalization: <cap>
         comma:  ,
        period:  .
   dollar sign:  $
     semicolon:  ;
         colon:  :
  single quote:  '
  double quote:  "
  no operation: <nop>

Performance

After 24 epochs of training, the network achieves the following performance on the test-set:

    Test P/R After 24 Epochs 
    =================================
    Key: <nop>	Prec:  97.1%	Recall:  97.8%	F-Score:  97.4%
    Key: <cap>	Prec:  68.6%	Recall:  57.8%	F-Score:  62.7%
    Key:   ,	Prec:  30.8%	Recall:  30.9%	F-Score:  30.9%
    Key:   .	Prec:  43.7%	Recall:  38.3%	F-Score:  40.8%
    Key:   '	Prec:  76.9%	Recall:  80.2%	F-Score:  78.5%
    Key:   :	Prec:  10.3%	Recall:   6.1%	F-Score:   7.7%
    Key:   "	Prec:  26.9%	Recall:  45.1%	F-Score:  33.7%
    Key:   $	Prec:  64.3%	Recall:  61.6%	F-Score:  62.9%
    Key:   ;	Prec:   0.0%	Recall:   0.0%	F-Score:   N/A
    Key:   ?	Prec:   0.0%	Recall:   0.0%	F-Score:   N/A
    Key:   !	Prec:   0.0%	Recall:   0.0%	F-Score:   N/A

As a frist attempt, the performance is pretty good! Especially since I did not fine tune with a smaller step size afterward, and the Engadget dataset used here is small in size (4MB total).

Double the training gives a small improvement.

Table 2. After 48 epochs of training

    Test P/R  Epoch 48 Batch 380
    =================================
    Key: <nop>	Prec:  97.1%	Recall:  98.0%	F-Score:  97.6%
    Key: <cap>	Prec:  73.2%	Recall:  58.9%	F-Score:  65.3%
    Key:   ,	Prec:  35.7%	Recall:  32.2%	F-Score:  33.9%
    Key:   .	Prec:  45.0%	Recall:  39.7%	F-Score:  42.2%
    Key:   '	Prec:  81.7%	Recall:  83.4%	F-Score:  82.5%
    Key:   :	Prec:  12.1%	Recall:  10.8%	F-Score:  11.4%
    Key:   "	Prec:  25.2%	Recall:  44.8%	F-Score:  32.3%
    Key:   $	Prec:  51.4%	Recall:  87.8%	F-Score:  64.9%
    Key:   ;	Prec:   0.0%	Recall:   0.0%	F-Score:   N/A
    Key:   ?	Prec:   5.6%	Recall:   4.8%	F-Score:   5.1%
    Key:   !	Prec:   0.0%	Recall:   0.0%	F-Score:   N/A

Usage

If you feel like using some of the code, you can cite this project via

@article{deeppunc,
  title={Deep-Auto-Punctuation},
  author={Yang, Ge},
  journal={arxiv},
  year={2017},
  doi={10.5281/zenodo.438358}
  url={https://zenodo.org/record/438358;
       https://github.com/episodeyang/deep-auto-punctuation}
}

To run

First unzip the engagdget data into folder ./engadget_data by running

tar -xvzf engadget_data.tar.gz

and then open up the notebook Learning Punctuations by reading Engadget.pynb, and you can just execute.

To view the reporting, open a visdom server by running

python visdom.server

and then go to http://localhost:8097

Requirements

pytorch numpy matplotlib tqdm bs4

Model Setup and Considerations

The initial setup I began with was a single uni-direction GRU, with input domain [A-z0-9] and output domain of the ops listed above. My hope at that time was to simply train the RNN to learn correcponding operations. A few things jumped out during the experiment:

  1. Use bi-directional GRU. with the uni-direction GRU, the network quickly learned capitalization of terms, but it had difficulties with single quote. In words like "I'm", "won't", there are simply too much ambiguity from reading only the forward part of the word. The network didn't have enough information to properly infer such punctuations.

    So I decided to change the uni-direction GRU to bi-direction GRU. The result is much better prediction for single quotes in concatenations.

    the network is still training, but the precision and recall of single quote is nowt close to 80%.

    This use of bi-directional GRU is standard in NLP processes. But it is nice to experience first-hand the difference in performance and training.

    A side effect of this switch is that the network now runs almost 2x slower. This leads to the next item in this list:

  2. Use the smallest model possible. At the very begining, my input embeding was borrowed from the Shakespeare model, so the input space include both capital alphabet as well as lower-case ones. What I didn't realize was that I didn't need the capital cases because all inputs were lower-case.

    So when the training became painfully slow after I switch to bi-directional GRU, I looked for ways to make the training faster. A look at the input embeding made it obvious that half of the embedding space wasn't needed.

    Removing the lower case bases made the traing around 3x faster. This is a rough estimate since I also decided to redownload the data set at the same time on the same machine.

  3. Text formatting. Proper formating of input text crawed from Engadget.com was crucial, especially because the occurrence of a lot of the puncuation was low and this is a character-level model. You can take a look at the crawed text inside ./engadget_data_tar.gz.

  4. Async and Multi-process crawing is much much faster. I initially wrote the engadget crawer as a single threaded class. Because the python requests library is synchronous, the crawler spent virtually all time waiting for the GET requests.

    This could be made a lot faster by parallelizing the crawling, or use proper async pattern.

    This thought came to me pretty late during the second crawl so I did not implement it. But for future work, parallel and async crawler is going to be on the todo list.

  5. Using Precision/Recall in a multi-class scenario. The setup makes the reasonable assumption that each operation can only be applied mutually exclusively. The accuracy metric used here are precision/recall and the F-score, both commonly used in the literature1, 2. The P/R and F-score are implemented according to wikipedia 3, 4.

    example accuracy report:

    Epoch 0 Batch 400 Test P/R
    =================================
    Key: <nop>	Prec:  99.1%	Recall:  96.6%	F-Score:  97.9%
    Key:   ,	Prec:   0.0%	Recall:   0.0%	F-Score:   N/A
    Key: <cap>	Prec: 100.0%	Recall:  75.0%	F-Score:  85.7%
    Key:   .	Prec:   0.0%	Recall:   0.0%	F-Score:   N/A
    Key:   '	Prec:  66.7%	Recall: 100.0%	F-Score:  80.0%
    
    
    true_p:	{'<nop>': 114, '<cap>': 3, "'": 2}
    p:	{'<nop>': 118, '<cap>': 4, "'": 2}
    all_p:	{'<nop>': 115, ',': 2, '<cap>': 3, '.': 1, "'": 3}
    
    400it [06:07,  1.33s/it]
    
  6. Hidden Layer initialization: In the past I've found it was easier for the neural network to generate good results when both the training and the generation starts with a zero initial state. In this case because we are computing time limited, I zero the hidden layer at the begining of each file.

  7. Mini-batches and Padding: During training, I first sort the entire training set by the length of each file (there are 45k of them) and arrange them in batches, so that files inside each batch are roughly similar size, and only minimal padding is needed. Sometimes the file becomes too long. In that case I use data.fuzzy_chunk_length() to calculate a good chunk length with heuristics. The result is mostly no padding during most of the trainings.

    Going from having no mini-batch to having a minibatch of 128, the time per batch hasn't changed much. The accuracy report above shows the training result after 24 epochs.

Data and Cross-Validation

The entire dataset is composed of around 50k blog posts from engadget. I randomly selected 49k of these as my training set, 50 as my validation set, and around 0.5k as my test set. The training is a bit slow on an Intel i7 desktop, averaging 1.5s/file depending on the length of the file. As a result, it takes about a day to go through the entire training set.

Todo:

All done.

Done:

  • execute demo test after training
  • add final performance metric
  • implement minibatch
  • a generative demo
  • add validation (once an hour or so)
  • add accuracy metric, use precision/recall.
  • change to bi-directional GRU
  • get data
  • Add temperature to generator
  • add self-feeding generator
  • get training to work
  • use optim and Adam

References

1: https://www.aclweb.org/anthology/D/D16/D16-1111.pdf
2: https://phon.ioc.ee/dokuwiki/lib/exe/fetch.php?media=people:tanel:interspeech2015-paper-punct.pdf
3: https://en.wikipedia.org/wiki/precision_and_recall
4: https://en.wikipedia.org/wiki/F1_score

Comments
  • Can't run example training

    Can't run example training

    Hi there,

    As a first contact with your project I am trying to run it 'as is', but it seems I can't run a proper training with the example notebook.

    All preliminary steps work fine, but when launching the training step, the only output I get is 0it [00:00, ?it/s], repeatedly, and nothing further is happening either on logs or in the directories (nothing is saved).

    By the way, I believe some indentation is missed for the last 2 lines of the block (need to be inside the for loop for batch_ind to be defined).

    I managed to test the pretrained models though.

    Thanks for your implementation anyways, and thanks in advance for your reply! Hope to get the code running properly soon :)

    F

    opened by francoishernandez 5
  • view size not compatible with input tensor size and stride

    view size not compatible with input tensor size and stride

    Traceback (most recent call last): File "train.py", line 71, in <module> egdt.forward(input_, target_) File "/home/flow/deep-auto-punctuation/model.py", line 90, in forward self.next_(input_batch) File "/home/flow/deep-auto-punctuation/model.py", line 111, in next_ self.output, self.hidden = self.model(self.embed(input_text), self.hidden) File "/home/flow/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 477, in __call__ result = self.forward(*input, **kwargs) File "/home/flow/deep-auto-punctuation/model.py", line 32, in forward output = self.decoder(gru_output.view(-1, self.hidden_size * self.bi_mul)) RuntimeError: invalid argument 2: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Call .contiguous() before .view(). at /opt/conda/conda-bld/pytorch_1533672544752/work/aten/src/TH/generic/THTensor.cpp:237

    Any idea what could be causing this?

    opened by sebastianvermaas 3
  • input string has differnt length from punctuation list

    input string has differnt length from punctuation list

    Hi, i've tried your code and got assertion error in data module due to length of input string and punctuation was not the same. I loaded your latest model without trained it again. do you have any advice ?

    gits

    opened by laluarif93 0
  •  Adding a license

    Adding a license

    Hello,

    Would you be willing to add a license to this repository? See: https://opensource.stackexchange.com/questions/1720/what-can-i-assume-if-a-publicly-published-project-has-no-license

    Thank you.

    opened by Tejash241 0
  • Issue with visdom.server

    Issue with visdom.server

    Hi there

    Brilliant work I looked up everywhere for a soluton for that but didn't solve the issue

    I keep getting the error message "C:\Users\David\Anaconda3\lib\site-packages\visdom\server.py:39: DeprecationWarning: zmq.eventloop.ioloop is deprecated in pyzmq 17. pyzmq now works with default tornado and asyncio eventloops."

    I try all the combinations of pip install visdom and conda install visdom etc I didn't succeed in compiling your work using the command make run

    Should I use a specific version of visdom or python to use your work?

    Thanks so much for your help Dave

    opened by Best-Trading-Indicator 3
  • Training size too big..Any suggestions?

    Training size too big..Any suggestions?

    Hi! I really am interested in testing and running through your code. Everything is working except for one thing.. When just before training, it says Too many values to unpack. Any suggestions on how to fix this issue? or any smaller size training sets you might know of?

    screen shot 2018-03-02 at 6 59 50 pm

    PS: it says python 2 but my kernel is python 3.

    opened by jlvasquezcollado 2
Releases(v1.0.0)
Owner
Ge Yang
Ge Yang
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern

Isen (Songyao Jiang) 128 Dec 08, 2022
PyTorch implementation of PNASNet-5 on ImageNet

PNASNet.pytorch PyTorch implementation of PNASNet-5. Specifically, PyTorch code from this repository is adapted to completely match both my implemetat

Chenxi Liu 314 Nov 25, 2022
Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral)

Joint Discriminative and Generative Learning for Person Re-identification [Project] [Paper] [YouTube] [Bilibili] [Poster] [Supp] Joint Discriminative

NVIDIA Research Projects 1.2k Dec 30, 2022
A python library to artfully visualize Factorio Blueprints and an interactive web demo for using it.

Factorio Blueprint Visualizer I love the game Factorio and I really like the look of factories after growing for many hours or blueprints after tweaki

Piet Brรถmmel 124 Jan 07, 2023
NL-Augmenter ๐ŸฆŽ โ†’ ๐Ÿ A Collaborative Repository of Natural Language Transformations

NL-Augmenter ๐ŸฆŽ โ†’ ๐Ÿ The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

๐Ÿ“– Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022) ๐Ÿ”ฅ If DaGAN is helpful in your photos/projects, please hel

Fa-Ting Hong 503 Jan 04, 2023
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022
ใ€ŠA-CNN: Annularly Convolutional Neural Networks on Point Cloudsใ€‹(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artั‘m Komarichev 44 Feb 24, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

face-mask-detection Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scr

amirsalar 13 Jan 18, 2022
Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

PatchNets This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details,

16 May 22, 2022
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.

optimaladj: A library for computing optimal adjustment sets in causal graphical models This package implements the algorithms introduced in Smucler, S

Facundo Sapienza 6 Aug 04, 2022