for a paper about leveraging discourse markers for training new models

Overview

TSLM-DISCOURSE-MARKERS

Scope

This repository contains:

(1) Code to extract discourse markers from wikipedia (TSA).

(1) Code to extract significant discoßurse markers from predictions over a sample

Usage

Evaluation code:

Installation

Using pip:

pip install git+ssh://[email protected]/IBM/tslm-discourse-markers.git#egg=tslm-discourse-markers

Alternatively, you can first clone the code, and install the requirements:

1. git clone [email protected]:IBM/tslm-discousrse-markers.git
2. cd tslm-discourse-markers
3. pip install -r requirements.txt

You also need to download fasttext model: curl https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.bin -o ~/Downloads/lid.176.bin and spacy english model: python -m spacy download en_core_web_sm

Running

Citing tslm-discourse-markers

If you are using tslm-discourse-markers in a publication, please cite the following paper:

Liat Ein-Dor, Ilya Shnayderman, Artem Spector, Lena Dankin,Ranit Aharonov and Noam Slonim 2022 Fortunately, Discourse Markers Can Enhance Language Models for Sentiment Analysis. AAAI-2022.

Model

SenDM model can be found at: https://huggingface.co/ibm/tslm-discourse-markers

Loading dataset

import datasets

directory = 'dataset/WIKI_ENGLISH' datasets.load_dataset('csv', data_files={folder: [f'{directory}/{folder}/{folder}_*.csv.gz'] for folder in ['train', 'dev','test']})

Contributing

This project welcomes external contributions, if you would like to contribute please see further instructions here

Pull requests are very welcome! Make sure your patches are well tested. Ideally create a topic branch for every separate change you make. For example:

  1. Fork the repo
  2. Create your feature branch (git checkout -b my-new-feature)
  3. Commit your changes (git commit -am 'Added some feature')
  4. Push to the branch (git push origin my-new-feature)
  5. Create new Pull Request

Changelog

Major changes are documented here.

Notes

If you have any questions or issues you can create a new issue here.

License

This code is distributed under Apache License 2.0. If you would like to see the detailed LICENSE click here.

Authors

The YASO dataset was collected by Liat Ein-Dor, Ilya Shnayderman, Artem Spector, Lena Dankin, Ranit Aharonov and Noam Slonim.

The code was written by Ilya Shnayderman.

Owner
International Business Machines
International Business Machines
Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

NeurMips: Neural Mixture of Planar Experts for View Synthesis This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture

James Lin 101 Dec 13, 2022
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

574 Jan 02, 2023
Car Parking Tracker Using OpenCv

Car Parking Vacancy Tracker Using OpenCv I used basic image processing methods i

Adwait Kelkar 30 Dec 03, 2022
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
subpixel: A subpixel convnet for super resolution with Tensorflow

subpixel: A subpixel convolutional neural network implementation with Tensorflow Left: input images / Right: output images with 4x super-resolution af

Atrium LTS 2.1k Dec 23, 2022
A tool to analyze leveraged liquidity mining and find optimal option combination for hedging.

LP-Option-Hedging Description A Python program to analyze leveraged liquidity farming/mining and find the optimal option combination for hedging imper

Aureliano 18 Dec 19, 2022
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking

WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un

25 Jan 01, 2023
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022
An end-to-end framework for mixed-integer optimization with data-driven learned constraints.

OptiCL OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in wh

Holly Wiberg 57 Dec 26, 2022