TransMorph: Transformer for Medical Image Registration

Overview

TransMorph: Transformer for Medical Image Registration

arXiv

keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registration

This is a PyTorch implementation of my paper:

Chen, Junyu, et al. "TransMorph: Transformer for Medical Image Registration. " arXiv, 2021.

TransMorph

TransMorph DIR Variants:

There are four TransMorph variants: TransMorph, TransMorph-diff, TransMorph-bspl, and TransMorph-Bayes.
Training and inference scripts are in TransMorph/, and the models are contained in TransMorph/model/.

  1. TransMorph: A hybrid Transformer-ConvNet network for image registration.
  2. TransMorph-diff: A probabilistic TransMorph that ensures a diffeomorphism.
  3. TransMorph-bspl: A B-spline TransMorph that ensures a diffeomorphism.
  4. TransMorph-Bayes: A Bayesian uncerntainty TransMorph that produces registration uncertainty estimate.

TransMorph Affine Model:

The scripts for TransMorph affine model are in TransMorph_affine/ folder.

train_xxx.py and infer_xxx.py are the training and inference scripts for TransMorph models.

Baseline Models:

We compared TransMorph with eight baseline registration methods + four Transformer architectures.
Baseline registration methods:

  1. SyN (ATNsPy)
  2. NiftyReg
  3. LDDMM
  4. deedsBCV
  5. VoxelMorph-1 & -2
  6. CycleMorph
  7. MIDIR

Baseline Transformer architectures:

  1. PVT
  2. nnFormer
  3. CoTr
  4. ViT-V-Net

Training and inference scripts for the baseline models will be available in the near future!

Dataset:

Due to restrictions, we cannot distribute our brain MRI data. However, several brain MRI datasets are publicly available online: IXI, ADNI, OASIS, ABIDE, etc. Note that those datasets may not contain labels (segmentation). To generate labels, you can use FreeSurfer, which is an open-source software for normalizing brain MRI images. Here are some useful commands in FreeSurfer: Brain MRI preprocessing and subcortical segmentation using FreeSurfer.

Citation:

If you find this code is useful in your research, please consider to cite:

@misc{chen2021transmorph,
title={TransMorph: Transformer for Medical Image Registration}, 
author={Junyu Chen and Yufan He and Eric C. Frey and Ye Li and Yong Du},
year={2021},
eprint={2111.10480},
archivePrefix={arXiv},
primaryClass={eess.IV}
}

TransMorph Architecture:

Example Results:

Qualitative comparisons:

Uncertainty Estimate by TransMorph-Bayes:

Quantitative Results:

Inter-patient Brain MRI:

XCAT-to-CT:

Reference:

Swin Transformer
easyreg
MIDIR
VoxelMorph

About Me

Owner
Junyu Chen
Ph.D. candidate in the Department of Electrical and Computer Engineering & the Department of Radiology and Radiological Science @ Johns Hopkins University
Junyu Chen
A PyTorch implementation of "From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network" (ICCV2021)

From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network The official code of VisionLAN (ICCV2021). VisionLAN successfully a

81 Dec 12, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020)

TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020) About The goal of our research problem is illustrated below: give

59 Dec 09, 2022
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.

Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámb

Andrés Milla 12 Aug 04, 2022
Source codes for the paper "Local Additivity Based Data Augmentation for Semi-supervised NER"

LADA This repo contains codes for the following paper: Jiaao Chen*, Zhenghui Wang*, Ran Tian, Zichao Yang, Diyi Yang: Local Additivity Based Data Augm

GT-SALT 36 Dec 02, 2022
C3D is a modified version of BVLC caffe to support 3D ConvNets.

C3D C3D is a modified version of BVLC caffe to support 3D convolution and pooling. The main supporting features include: Training or fine-tuning 3D Co

Meta Archive 1.1k Nov 14, 2022
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models Code accompanying CVPR'20 paper of the same title. Paper lin

Alex Damian 7k Dec 30, 2022
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al

Chainer 1.1k Jan 01, 2023
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

Hyungtae Lim 225 Dec 29, 2022
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Nervana 3.9k Dec 20, 2022
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
Occlusion robust 3D face reconstruction model in CFR-GAN (WACV 2022)

Occlusion Robust 3D face Reconstruction Yeong-Joon Ju, Gun-Hee Lee, Jung-Ho Hong, and Seong-Whan Lee Code for Occlusion Robust 3D Face Reconstruction

Yeongjoon 31 Dec 19, 2022
HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Jan 06, 2023