Sign Language Transformers (CVPR'20)

Related tags

Deep Learningslt
Overview

Sign Language Transformers (CVPR'20)

This repo contains the training and evaluation code for the paper Sign Language Transformers: Sign Language Transformers: Joint End-to-end Sign Language Recognition and Translation.

This code is based on Joey NMT but modified to realize joint continuous sign language recognition and translation. For text-to-text translation experiments, you can use the original Joey NMT framework.

Requirements

  • Download the feature files using the data/download.sh script.

  • [Optional] Create a conda or python virtual environment.

  • Install required packages using the requirements.txt file.

    pip install -r requirements.txt

Usage

python -m signjoey train configs/sign.yaml

! Note that the default data directory is ./data. If you download them to somewhere else, you need to update the data_path parameters in your config file.

ToDo:

  • Initial code release.
  • Release image features for Phoenix2014T.
  • Share extensive qualitative and quantitative results & config files to generate them.
  • (Nice to have) - Guide to set up conda environment and docker image.

Reference

Please cite the paper below if you use this code in your research:

@inproceedings{camgoz2020sign,
  author = {Necati Cihan Camgoz and Oscar Koller and Simon Hadfield and Richard Bowden},
  title = {Sign Language Transformers: Joint End-to-end Sign Language Recognition and Translation},
  booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2020}
}

Acknowledgements

This work was funded by the SNSF Sinergia project "Scalable Multimodal Sign Language Technology for Sign Language Learning and Assessment" (SMILE) grant agreement number CRSII2 160811 and the European Union’s Horizon2020 research and innovation programme under grant agreement no. 762021 (Content4All). This work reflects only the author’s view and the Commission is not responsible for any use that may be made of the information it contains. We would also like to thank NVIDIA Corporation for their GPU grant.

Owner
Necati Cihan Camgoz
Necati Cihan Camgoz
Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)

Geometry-Aware Learning of Maps for Camera Localization This is the PyTorch implementation of our CVPR 2018 paper "Geometry-Aware Learning of Maps for

NVIDIA Research Projects 321 Nov 26, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022
DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias

tofis 24 Oct 08, 2022
Code for the Paper "Diffusion Models for Handwriting Generation"

Code for the Paper "Diffusion Models for Handwriting Generation"

62 Dec 21, 2022
Script for getting information in discord

User-info.py Script for getting information in https://discord.com/ Instalação: apt-get update -y apt-get upgrade -y apt-get install git pkg install

Moleey 1 Dec 18, 2021
An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
Modification of convolutional neural net "UNET" for image segmentation in Keras framework

ZF_UNET_224 Pretrained Model Modification of convolutional neural net "UNET" for image segmentation in Keras framework Requirements Python 3.*, Keras

209 Nov 02, 2022
MGFN: Multi-Graph Fusion Networks for Urban Region Embedding was accepted by IJCAI-2022.

Multi-Graph Fusion Networks for Urban Region Embedding (IJCAI-22) This is the implementation of Multi-Graph Fusion Networks for Urban Region Embedding

202 Nov 18, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
Solving reinforcement learning tasks which require language and vision

Multimodal Reinforcement Learning JAX implementations of the following multimodal reinforcement learning approaches. Dual-coding Episodic Memory from

Henry Prior 31 Feb 26, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
Deep Crop Rotation

Deep Crop Rotation Paper (to come very soon!) We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classi

Félix Quinton 5 Sep 23, 2022
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
JFB: Jacobian-Free Backpropagation for Implicit Models

JFB: Jacobian-Free Backpropagation for Implicit Models

Typal Research 28 Dec 11, 2022
PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)

Value Iteration Networks in PyTorch Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. Value Iteration Networks. Neural Information Processing

LEI TAI 75 Nov 24, 2022