FairMOT - A simple baseline for one-shot multi-object tracking

Overview

FairMOT

PWC PWC PWC PWC

A simple baseline for one-shot multi-object tracking:

FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking,
Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng, Wenyu Liu,
arXiv technical report (arXiv 2004.01888)

Abstract

There has been remarkable progress on object detection and re-identification in recent years which are the core components for multi-object tracking. However, little attention has been focused on accomplishing the two tasks in a single network to improve the inference speed. The initial attempts along this path ended up with degraded results mainly because the re-identification branch is not appropriately learned. In this work, we study the essential reasons behind the failure, and accordingly present a simple baseline to addresses the problems. It remarkably outperforms the state-of-the-arts on the MOT challenge datasets at 30 FPS. We hope this baseline could inspire and help evaluate new ideas in this field.

News

  • (2020.05.24) A light version of FairMOT using yolov5s backbone is released!
  • (2020.09.10) A new version of FairMOT is released! (73.7 MOTA on MOT17)

Main updates

  • We pretrain FairMOT on the CrowdHuman dataset using a weakly-supervised learning approach.
  • To detect bounding boxes outside the image, we use left, top, right and bottom (4 channel) to replace the WH head (2 channel).

Tracking performance

Results on MOT challenge test set

Dataset MOTA IDF1 IDS MT ML FPS
2DMOT15 60.6 64.7 591 47.6% 11.0% 30.5
MOT16 74.9 72.8 1074 44.7% 15.9% 25.9
MOT17 73.7 72.3 3303 43.2% 17.3% 25.9
MOT20 61.8 67.3 5243 68.8% 7.6% 13.2

All of the results are obtained on the MOT challenge evaluation server under the “private detector” protocol. We rank first among all the trackers on 2DMOT15, MOT16, MOT17 and MOT20. The tracking speed of the entire system can reach up to 30 FPS.

Video demos on MOT challenge test set

Installation

  • Clone this repo, and we'll call the directory that you cloned as ${FAIRMOT_ROOT}
  • Install dependencies. We use python 3.8 and pytorch >= 1.7.0
conda create -n FairMOT
conda activate FairMOT
conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.2 -c pytorch
cd ${FAIRMOT_ROOT}
pip install cython
pip install -r requirements.txt
  • We use DCNv2_pytorch_1.7 in our backbone network (pytorch_1.7 branch). Previous versions can be found in DCNv2.
git clone -b pytorch_1.7 https://github.com/ifzhang/DCNv2.git
cd DCNv2
./make.sh
  • In order to run the code for demos, you also need to install ffmpeg.

Data preparation

  • CrowdHuman The CrowdHuman dataset can be downloaded from their official webpage. After downloading, you should prepare the data in the following structure:
crowdhuman
   |——————images
   |        └——————train
   |        └——————val
   └——————labels_with_ids
   |         └——————train(empty)
   |         └——————val(empty)
   └------annotation_train.odgt
   └------annotation_val.odgt

If you want to pretrain on CrowdHuman (we train Re-ID on CrowdHuman), you can change the paths in src/gen_labels_crowd_id.py and run:

cd src
python gen_labels_crowd_id.py

If you want to add CrowdHuman to the MIX dataset (we do not train Re-ID on CrowdHuman), you can change the paths in src/gen_labels_crowd_det.py and run:

cd src
python gen_labels_crowd_det.py
  • MIX We use the same training data as JDE in this part and we call it "MIX". Please refer to their DATA ZOO to download and prepare all the training data including Caltech Pedestrian, CityPersons, CUHK-SYSU, PRW, ETHZ, MOT17 and MOT16.
  • 2DMOT15 and MOT20 2DMOT15 and MOT20 can be downloaded from the official webpage of MOT challenge. After downloading, you should prepare the data in the following structure:
MOT15
   |——————images
   |        └——————train
   |        └——————test
   └——————labels_with_ids
            └——————train(empty)
MOT20
   |——————images
   |        └——————train
   |        └——————test
   └——————labels_with_ids
            └——————train(empty)

Then, you can change the seq_root and label_root in src/gen_labels_15.py and src/gen_labels_20.py and run:

cd src
python gen_labels_15.py
python gen_labels_20.py

to generate the labels of 2DMOT15 and MOT20. The seqinfo.ini files of 2DMOT15 can be downloaded here [Google], [Baidu],code:8o0w.

Pretrained models and baseline model

  • Pretrained models

DLA-34 COCO pretrained model: DLA-34 official. HRNetV2 ImageNet pretrained model: HRNetV2-W18 official, HRNetV2-W32 official. After downloading, you should put the pretrained models in the following structure:

${FAIRMOT_ROOT}
   └——————models
           └——————ctdet_coco_dla_2x.pth
           └——————hrnetv2_w32_imagenet_pretrained.pth
           └——————hrnetv2_w18_imagenet_pretrained.pth
  • Baseline model

Our baseline FairMOT model (DLA-34 backbone) is pretrained on the CrowdHuman for 60 epochs with the self-supervised learning approach and then trained on the MIX dataset for 30 epochs. The models can be downloaded here: crowdhuman_dla34.pth [Google] [Baidu, code:ggzx ] [Onedrive]. fairmot_dla34.pth [Google] [Baidu, code:uouv] [Onedrive]. (This is the model we get 73.7 MOTA on the MOT17 test set. ) After downloading, you should put the baseline model in the following structure:

${FAIRMOT_ROOT}
   └——————models
           └——————fairmot_dla34.pth
           └——————...

Training

  • Download the training data
  • Change the dataset root directory 'root' in src/lib/cfg/data.json and 'data_dir' in src/lib/opts.py
  • Pretrain on CrowdHuman and train on MIX:
sh experiments/crowdhuman_dla34.sh
sh experiments/mix_ft_ch_dla34.sh
  • Only train on MIX:
sh experiments/mix_dla34.sh
  • Only train on MOT17:
sh experiments/mot17_dla34.sh
  • Finetune on 2DMOT15 using the baseline model:
sh experiments/mot15_ft_mix_dla34.sh
  • Train on MOT20: The data annotation of MOT20 is a little different from MOT17, the coordinates of the bounding boxes are all inside the image, so we need to uncomment line 313 to 316 in the dataset file src/lib/datasets/dataset/jde.py:
#np.clip(xy[:, 0], 0, width, out=xy[:, 0])
#np.clip(xy[:, 2], 0, width, out=xy[:, 2])
#np.clip(xy[:, 1], 0, height, out=xy[:, 1])
#np.clip(xy[:, 3], 0, height, out=xy[:, 3])

Then, we can train on the mix dataset and finetune on MOT20:

sh experiments/crowdhuman_dla34.sh
sh experiments/mix_ft_ch_dla34.sh
sh experiments/mot20_ft_mix_dla34.sh

The MOT20 model 'mot20_fairmot.pth' can be downloaded here: [Google] [Baidu, code:jmce].

  • For ablation study, we use MIX and half of MOT17 as training data, you can use different backbones such as ResNet, ResNet-FPN, HRNet and DLA::
sh experiments/mix_mot17_half_dla34.sh
sh experiments/mix_mot17_half_hrnet18.sh
sh experiments/mix_mot17_half_res34.sh
sh experiments/mix_mot17_half_res34fpn.sh
sh experiments/mix_mot17_half_res50.sh

The ablation study model 'mix_mot17_half_dla34.pth' can be downloaded here: [Google] [Onedrive] [Baidu, code:iifa].

  • Performance on the test set of MOT17 when using different training data:
Training Data MOTA IDF1 IDS
MOT17 69.8 69.9 3996
MIX 72.9 73.2 3345
CrowdHuman + MIX 73.7 72.3 3303
  • We use CrowdHuman, MIX and MOT17 to train the light version of FairMOT using yolov5s as backbone:
sh experiments/all_yolov5s.sh

The pretrained model of yolov5s on the COCO dataset can be downloaded here: [Google] [Baidu, code:wh9h].

The model of the light version 'fairmot_yolov5s' can be downloaded here: [Google] [Baidu, code:2y3a].

Tracking

  • The default settings run tracking on the validation dataset from 2DMOT15. Using the baseline model, you can run:
cd src
python track.py mot --load_model ../models/fairmot_dla34.pth --conf_thres 0.6

to see the tracking results (76.5 MOTA and 79.3 IDF1 using the baseline model). You can also set save_images=True in src/track.py to save the visualization results of each frame.

  • For ablation study, we evaluate on the other half of the training set of MOT17, you can run:
cd src
python track_half.py mot --load_model ../exp/mot/mix_mot17_half_dla34.pth --conf_thres 0.4 --val_mot17 True

If you use our pretrained model 'mix_mot17_half_dla34.pth', you can get 69.1 MOTA and 72.8 IDF1.

  • To get the txt results of the test set of MOT16 or MOT17, you can run:
cd src
python track.py mot --test_mot17 True --load_model ../models/fairmot_dla34.pth --conf_thres 0.4
python track.py mot --test_mot16 True --load_model ../models/fairmot_dla34.pth --conf_thres 0.4
  • To run tracking using the light version of FairMOT (68.5 MOTA on the test of MOT17), you can run:
cd src
python track.py mot --test_mot17 True --load_model ../models/fairmot_yolov5s.pth --conf_thres 0.4 --arch yolo --reid_dim 64

and send the txt files to the MOT challenge evaluation server to get the results. (You can get the SOTA results 73+ MOTA on MOT17 test set using the baseline model 'fairmot_dla34.pth'.)

  • To get the SOTA results of 2DMOT15 and MOT20, run the tracking code:
cd src
python track.py mot --test_mot15 True --load_model your_mot15_model.pth --conf_thres 0.3
python track.py mot --test_mot20 True --load_model your_mot20_model.pth --conf_thres 0.3

Results of the test set all need to be evaluated on the MOT challenge server. You can see the tracking results on the training set by setting --val_motxx True and run the tracking code. We set 'conf_thres' 0.4 for MOT16 and MOT17. We set 'conf_thres' 0.3 for 2DMOT15 and MOT20.

Demo

You can input a raw video and get the demo video by running src/demo.py and get the mp4 format of the demo video:

cd src
python demo.py mot --load_model ../models/fairmot_dla34.pth --conf_thres 0.4

You can change --input-video and --output-root to get the demos of your own videos. --conf_thres can be set from 0.3 to 0.7 depending on your own videos.

Train on custom dataset

You can train FairMOT on custom dataset by following several steps bellow:

  1. Generate one txt label file for one image. Each line of the txt label file represents one object. The format of the line is: "class id x_center/img_width y_center/img_height w/img_width h/img_height". You can modify src/gen_labels_16.py to generate label files for your custom dataset.
  2. Generate files containing image paths. The example files are in src/data/. Some similar code can be found in src/gen_labels_crowd.py
  3. Create a json file for your custom dataset in src/lib/cfg/. You need to specify the "root" and "train" keys in the json file. You can find some examples in src/lib/cfg/.
  4. Add --data_cfg '../src/lib/cfg/your_dataset.json' when training.

Acknowledgement

A large part of the code is borrowed from Zhongdao/Towards-Realtime-MOT and xingyizhou/CenterNet. Thanks for their wonderful works.

Citation

@article{zhang2020fair,
  title={FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking},
  author={Zhang, Yifu and Wang, Chunyu and Wang, Xinggang and Zeng, Wenjun and Liu, Wenyu},
  journal={arXiv preprint arXiv:2004.01888},
  year={2020}
}
Owner
Yifu Zhang
Master student of HUST and Research intern of MSRA
Yifu Zhang
Malmo Collaborative AI Challenge - Team Pig Catcher

The Malmo Collaborative AI Challenge - Team Pig Catcher Approach The challenge involves 2 agents who can either cooperate or defect. The optimal polic

Kai Arulkumaran 66 Jun 29, 2022
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022
Multi-Stage Progressive Image Restoration

Multi-Stage Progressive Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Sh

Syed Waqas Zamir 859 Dec 22, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-like Documents.

Value Retrieval with Arbitrary Queries for Form-like Documents Introduction Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-

Salesforce 13 Sep 15, 2022
A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization

sam.pytorch A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization ( Foret+2020) Paper, Official implementa

Ryuichiro Hataya 102 Dec 28, 2022
Blind visual quality assessment on 360° Video based on progressive learning

Blind visual quality assessment on omnidirectional or 360 video (ProVQA) Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and V

5 Jan 06, 2023
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis This is the pytorch implementation for our MICCAI 2021 paper. A Mul

Jiarong Ye 7 Apr 04, 2022
the official code for ICRA 2021 Paper: "Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation"

G2S This is the official code for ICRA 2021 Paper: Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation by Hemang

NeurAI 4 Jul 27, 2022
Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021) In this repository we provide PyTorch implementations for GeMCL; a

4 Apr 15, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
Curvlearn, a Tensorflow based non-Euclidean deep learning framework.

English | 简体中文 Why Non-Euclidean Geometry Considering these simple graph structures shown below. Nodes with same color has 2-hop distance whereas 1-ho

Alibaba 123 Dec 12, 2022
A CNN implementation using only numpy. Supports multidimensional images, stride, etc.

A CNN implementation using only numpy. Supports multidimensional images, stride, etc. Speed up due to heavy use of slicing and mathematical simplification..

2 Nov 30, 2021
CS5242_2021 - Neural Networks and Deep Learning, NUS CS5242, 2021

CS5242_2021 Neural Networks and Deep Learning, NUS CS5242, 2021 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : https:/

Xavier Bresson 165 Oct 25, 2022
HAT: Hierarchical Aggregation Transformers for Person Re-identification

HAT: Hierarchical Aggregation Transformers for Person Re-identification

11 Sep 05, 2022