Curating a dataset for bioimage transfer learning

Overview

CytoImageNet

A large-scale pretraining dataset for bioimage transfer learning.

cytoimagenet_plot

Motivation

In past few decades, the increase in speed of data collection has led to the dawn of so-called 'big data'. In the field of molecular biology, this was seen in 'high throughput sequencing', where DNA and protein assays exceeded the capability of scientists to analyze large amount of datas. The need to develop computational methods that can match the rate at which data is collected sparked the era of 'bioinformatics'. In more recent years, our ability to capture and store biological images has grown tremendously to the point where we may now consider microscopy images 'big data'.

Thus, a need for automated methods to help analyze biological images emerges. Here, we take inspiration from the success of ImageNet to curate CytoImageNet; a large-scale dataset of weakly labeled microscopy images. We believe that pretraining deep learning models on CytoImageNet will result in models that can extract image features with stronger biological signals from microscopy images, in comparison to ImageNet features that were trained originally on natural images (e.g. buses, airplanes).

Results

Our trained model only achieved 13.42% accuracy on the training set and 11.32% on the validation set. Yet, it produced features competitive to ImageNet on all 3 downstream microscopy classification tasks.

Given the closer domain of CytoImageNet, we find it surprising that features pretrained on CytoImageNet don’t beat ImageNet-pretrained features by a significant margin. In the case of ImageNet, Kornblith, Shlens and Le 2019 reported a strong correlation between ImageNet validation accuracy and transfer accuracy. It may be that we haven’t had the opportunity to optimize the model enough, and we believe this may be explored in future work. In addition, it has been found that pretraining on a subset of ImageNet (with classes more similar to the target task) can improve transfer performance. Future researchers may explore pretraining on labels from specific categories (e.g. phenotype) if the target task focuses more on cell phenotype, compounds/treatment, or protein localization.

Read more here.

About the data

890,737 total images. 894 classes (~1000 images per class).

Microscopy images belong to 40 openly available datasets from the following databases: Recursion, Image Data Resource, Broad Bioimage Benchmark Collection, Kaggle and the Cell Image Library. See below for the list of datasets included.

The classes are soft/weak labels, so overlap is possible. Labels were assigned based on image metadata provided in the originating datasets. Chosen label could correspond to any of [organism, cell_type, cell_visible, phenotype, compound, gene, sirna].

Category # of labels
compound 637
phenotype 93
cell_type 44
gene 43
cell_visible 38
sirna 36
organism 3

Metadata associated with each image

  • label: Class assigned to image
  • category: Name of column where label originates from (e.g. organism)
  • database: Database containing source dataset
  • name: Name of source dataset (created if no explicit name in database)
  • dir_name: Shorthand naming convention of dataset (created if no explicit shorthand in database)
  • path: Relative path to folder containing image file. (e.g. /cytoimagenet/human)
  • filename: Standardized filename based on binary of image number in class (e.g. human-00001011.png)
  • idx: Index that maps to original image from source dataset. (e.g. bbbbc041-14631)
  • organism: Biological organism (e.g. human)
  • cell_type: May refer to cell class (e.g. red blood cell) or cell line (e.g. u2os)
  • cell_visible: May refer to cell components that were stained (e.g. actin) or features of an organism that were stained for (e.g. pharynx)
  • phenotype: May refer to disease condition (e.g. leukemia), mechanism-of-action (MOA), cell cycle stage (e.g. telophase), etc.
  • compound: Name of compound treatment
  • sirna: Name of siRNA treatment
  • gene: Name of gene (or protein) targeted (" targeted" added to avoid overlapping labels with cell_visible)
  • microscopy: Microscopy modality (e.g. fluorescence)
  • crop: True if image is a crop from an image. False, otherwise.
  • scaling: Length of crop side relative to size of original image (e.g. 0.5 corresponds to a 0.5 by 0.5 window ~ 1/4 the original image)
  • x_min, x_max, y_min, y_max: Slicing indices to create crop from original image

NOTE: In the case of multi-labels in each category, possible labels are separated by a "|" (e.g. nucleus|actin|mitochondria).

EXTRA NOTE: All labels were converted to lowercase, which may make searching labels difficult, particularly with compound labels.

Availability of Data

CytoImageNet is now available on Kaggle: https://www.kaggle.com/stanleyhua/cytoimagenet (~56 GB).


Methods

Data Cleaning

Annotation

65 datasets were manually searched one by one, requiring dataset-specific annotation processing due to inconsistency and sometimes unreliability of available metadata. If metadata was available for all images, columns were selected and often transformed to create the standardized metadata for each image above. If not, metadata was curated based on available information about the dataset and assigned to all images in the dataset. Labels found in other datasets with different names were standardized and merged if found (e.g. neutrophil -> white blood cell, GPCR -> cell membrane). In the case that multiple labels exist for a category, multi-labels are separated by a "|" (e.g. nucleus|actin|mitochondria).

For fluorescent microscopy images, images are typically grayscale with around 1-7+ images depending on what is being stained for. Yet, these correspond to 1 row in the dataset. These pseudo (uncreated) images are given filenames that allow mapping to the original existing images to merge. These images with 1-7+ channels are merged as part of the data processing pipeline, if selected.

In total, this produced 2.7 million rows with each row corresponding to an image and a unique image index.

RELEVANT CODE: clean_metadata.py, describe_dataset.py


Weak Label Assignment & Stratified Downsampling

Of the 2.7 million row table, each column from [organism, cell_type, cell_visible, phenotype, compound, gene, sirna] were searched for unique values and their counts, ignoring how labels group together between columns. To create near to 1000 labels, potential labels with counts equal to or above a chosen threshold of 287 served as potential labels. Beginning from the least counts, potential labels were iterated through, keeping track of rows that were already assigned labels in a hash table via their unique index. Stratified sampling based on metadata curated is used to improve diversity of images selected for labels.

Pseudo-Code: for each potential label

  1. Filter for images containing potential label in metadata AND not currently in hash table.
  2. Skip if < 287 images for potential label. End iteration.
  3. If less than 1000 images, skip to step 6.
  4. If > 10,000 images, sample 10,000 rows by a preliminary stratified sampling on columns in [dataset, organism and cell type].
  5. If > 1000 images, sample 1000 rows by stratified sampling on columns in [organism, cell_type, cell visible, sirna, compound, phenotype].
  6. Save potential label and update hash table with used files.

RELEVANT CODE: analyze_metadata.py


Image Data Cleaning & Standardization

In general, there is no one-size-fits-all when it comes to microscopy images since the types of images collected vary based on the study. And a lack of a golden standard for storing image data makes data cleaning a dataset-specific task. The following steps are done on selected images...

  • Standardize file format to PNG from other formats (TIF, JPG, FLEX, BMP, etc.)
  • Converting RGB images to grayscale.
  • If merging fluorescently stained channels, normalize each channel using 0.1th and 99.9th percentile pixel intensity, then merge channels to create grayscale images.

NOTE: Brightfield microscopy images are separated from fluorescent microscopy images.

NOTE: The dataset contains single channel images (e.g. an image only stained for actin, brightfield images).

EXTRA NOTE: Normalization procedure follows preprocessing used in training DeepLoc and helps in brightening dim images.

Merging Procedure channel merging

RELEVANT CODE: preprocessor.py, prepare_dataset.py


Upsampling Classes

upsampling_procedure

To increase image diversity and class size, we take 1-4 crops per image of different scale, preferably. Since microscopy images are not center-focused, we split the image into 4 non-overlapping windows. For each window, we randomly choose the crop size based on a scaling factor from [1/2, 1/4, 1/8, 1/16], making sure that crop sizes are above 70x70 pixels. Then we take the random crop from anywhere in the window. Crops are filtered for artifacts (completely white/black, too dark). Each crop is normalized once again with respect to the 0.1th and 99.9th percentile pixel intensity.

We extract ImageNet features and use UMAPs (a dimensionality reduction method) to visualize the effects of our chosen upsampling method on 20 randomly chosen classes. After upsampling, we increase the diversity of our classes by introducing different resolutions (scaling). Notice that it becomes more difficult for ImageNet features to separate images from different classes.

upsampling_effects

RELEVANT CODE: prepare_dataset.py, feature_extraction.py, visualize_classes.py


Quality Control

Pre-upsampling, we discard PIL unreadable images from potential images.

Post-upsampling, we discard the following kinds of images:

  1. Uniform/constant images
  • This filter removes images with 0.1th and 99.9th percentile pixel intensities.
  1. Binary masks
  • This filter removes images with only two unique pixel intensities.
  1. Dim/empty images
  • This filter removes images whose 75th percentile pixel intensity is equal to 0. Intuitively, this would suggest that most of the image is dark. '75th percentile' was chosen based on plotting examples of dim images and experimenting with different thresholds.

NOTE: We have no guarantees for the quality of the data outside of these quality checks.

RELEVANT CODE: prepare_dataset.py


Model Training

CytoImageNet is split into a training and validation set with 10% used for validation. This yields roughly 900 training samples for each label. Images are fed in batches of 64 with random 0 to 360 degrees rotations. We train convolutional networks (EfficientNetB0) to classify one of the 894 labels, by minimizing the categorical cross-entropy loss of predictions to ground truth labels. Randomly-initialized models were trained for 24 epochs (2 weeks) on an NVIDIA Tesla K40C. The loss was optimized via the Adam optimizer with learning rate of 0.001

RELEVANT CODE: model_pretraining.py

Evaluation (Transfer Tasks)

We validate the performance of our CytoImageNet features on three classification-based transfer tasks: (1) BBBC021 evaluation protocol from the Broad Institute, (2) the Cells Out of Sample (COOS-7) dataset, and (3) the CyCLOPS Wt2 dataset.

Methods of Feature Extraction

Since ImageNet does not contain microscopy images, we extract image features in 4 different methods to create a fairer comparison:

  1. concatenation and normalization
    • normalize each channel filling in [0,1] with the 0.1th and 99.9th percentile pixel intensity
    • extract features from each channel and concatenate, resulting in 1280 x (n channels) features
  2. concatenation and no normalization
    • extract features from each channel and concatenate, resulting in 1280 x (n channels) features
  3. merge and normalization
    • normalize each channel filling in [0,1] with the 0.1th and 99.9th percentile pixel intensity
    • merge channel images into 1 grayscale image then extract features, resulting in 1280 features
  4. merge and no normalization
    • merge channel images into 1 grayscale image then extract features, resulting in 1280 features

BBBC021 Evaluation Protocol

The procedure is as follows:

  1. Extract image features from ~2000 images (each 'image' is made of 3 grayscale fluorescent microscopy images).
  2. Aggregate mean feature vector on treatment (compound - at specific concentration). Resulting in 103 feature vectors corresponding to 103 treatments.
  3. Using 1-nearest neighbors (kNN), classify mechanism-of-action (MOA) label, excluding neighbors with same compound treatments.
  4. Report accuracy, termed 'not-same-compound' (NSC) accuracy.

COOS-7

A dataset of single-cell mouse cells, COOS-7 was originally designed to test the out-of-sample generalizability of trained classifiers. For each of the 4 test sets, the evaluation procedure is as follows:

  1. Extract image features (each 'image' is made of 2 grayscale fluorescent microscopy images)
  2. Using 11-nearest neighbors trained on features extracted from the training set, classify the protein's localization given in one of 7 labels.

CyCLOPS

This dataset is composed of single-cell images of yeast cells. The evaluation procedure is as follows:

  1. Extract image features (each 'image' is made of 2 grayscale fluorescent microscopy images)
  2. Using 11-nearest neighbors, classify the protein's localization given in one of 17 labels.

RELEVANT CODE: model_evaluation.py


Sources of Data

Database Number of Labels Contributed
Recursion 651
Image Data Resource 450
Broad Bioimage Benchmark Collection 202
Kaggle 27
Cell Image Library 1

CytoImageNet image data comes from the open-source datasets listed below.

NOTE: If dataset name is too long (e.g. name of source publication), a shorter name is given.

Broad Bioimage Benchmark Collection

Cell Image Library

Image Data Resource

Kaggle

Recursion


Acknowledgements

This project was supervised by Professor Alan Moses and Dr. Alex Lu, who are both experts in the field of representation learning for biological images and sequence data. The project was funded by the University of Toronto CSB Undergraduate Research Award.

Special thanks to Professor Juan Caicedo of the Broad Institute for his instruction on the BBBC021 evaluation protocol, and Professor Anne Carpenter for her help early on in understanding datasets in the Broad Bioimage Benchmark Collection.

Owner
Stanley Z. Hua
3rd Year Computer Science & BCB Student at University of Toronto
Stanley Z. Hua
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

25 Dec 08, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We

haguettaz 12 Dec 10, 2022
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
Reinforcement Learning for Automated Trading

Reinforcement Learning for Automated Trading This thesis has been realized for the obtention of the Master's in Mathematical Engineering at the Polite

Pierpaolo Necchi 80 Jun 19, 2022
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
Establishing Strong Baselines for TripClick Health Retrieval; ECIR 2022

TripClick Baselines with Improved Training Data Welcome 🙌 to the hub-repo of our paper: Establishing Strong Baselines for TripClick Health Retrieval

Sebastian Hofstätter 3 Nov 03, 2022
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice,

LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice, for a model of choice, by iteratively removing each feature from the set, and eval

Ahmet Erdem 691 Dec 23, 2022
Planner_backend - Academic planner application designed for students and counselors.

Planner (backend) Academic planner application designed for students and advisors.

2 Dec 31, 2021
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
An educational resource to help anyone learn deep reinforcement learning.

Status: Maintenance (expect bug fixes and minor updates) Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that ma

OpenAI 7.6k Jan 09, 2023
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021