Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

Overview

IROS21 information

To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in Evaluations.md.

To test the different Waypoint Generators, follow the steps in waypoint_eval.md

DRL agents are located in the agents folder.

Arena-MARL

A flexible, high-performance 2D simulator with configurable agents, multiple sensors, and benchmark scenarios for testing robotic navigation in multi-agent settings.

Arena-MARL uses Flatland as the core simulator and is a modular high-level library for end-to-end experiments in embodied AI -- defining embodied AI tasks (e.g. navigation, obstacle avoidance, behavior cloning), training agents (via imitation or reinforcement learning, or no learning at all using conventional approaches like DWA, TEB or MPC), and benchmarking their performance on the defined tasks using standard metrics.

Before Training After Training

What is this repository for?

Train DRL agents on ROS compatible simulations for autonomous navigation in highly dynamic environments. Flatland-DRL integration is inspired by Ronja Gueldenring's work: drl_local_planner_ros_stable_baselines. Test state of the art local and global planners in ROS environments both in simulation and on real hardware. Following features are included:

  • Setup to train a local planner with reinforcement learning approaches from stable baselines3
  • Training in simulator Flatland in train mode
  • Include realistic behavior patterns and semantic states of obstacles (speaking, running, etc.)
  • Include different obstacles classes (other robots, vehicles, types of persons, etc.)
  • Implementation of intermediate planner classes to combine local DRL planner with global map-based planning of ROS Navigation stack
  • Testing a variety of planners (learning based and model based) within specific scenarios in test mode
  • Modular structure for extension of new functionalities and approaches

Start Guide

We recommend starting with the start guide which contains all information you need to know to start off with this project including installation on Linux and Windows as well as tutorials to start with.

  • For Mac, please refer to our Docker.

1. Installation

Please refer to Installation.md for detailed explanations about the installation process.

1.1. Docker

We provide a Docker file to run our code on other operating systems. Please refer to Docker.md for more information.

2. Usage

DRL Training

Please refer to DRL-Training.md for detailed explanations about agent, policy and training setups.

Scenario Creation with the arena-scenario-gui

To create complex, collaborative scenarios for training and/or evaluation purposes, please refer to the repo arena-scenario-gui. This application provides you with an user interface to easily create complex scenarios with multiple dynamic and static obstacles by drawing and other simple UI elements like dragging and dropping. This will save you a lot of time in creating complex scenarios for you individual use cases.

Used third party repos:

Owner
Robotics, Autonomous Navigation and Computer Vision Research
SphereFace: Deep Hypersphere Embedding for Face Recognition

SphereFace: Deep Hypersphere Embedding for Face Recognition By Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj and Le Song License SphereFa

Weiyang Liu 1.5k Dec 29, 2022
Bu repo SAHI uygulamasını mantığını öğreniyoruz.

SAHI-Learn: SAHI'den Beraber Kodlamak İster Misiniz Herkese merhabalar ben Kadir Nar. SAHI kütüphanesine gönüllü geliştiriciyim. Bu repo SAHI kütüphan

Kadir Nar 11 Aug 22, 2022
RLMeta is a light-weight flexible framework for Distributed Reinforcement Learning Research.

RLMeta rlmeta - a flexible lightweight research framework for Distributed Reinforcement Learning based on PyTorch and moolib Installation To build fro

Meta Research 281 Dec 22, 2022
Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Tim Ansell 70 Nov 04, 2022
Single object tracking and segmentation.

Single/Multiple Object Tracking and Segmentation Codes and comparison of recent single/multiple object tracking and segmentation. News 💥 AutoMatch is

ZP ZHANG 385 Jan 02, 2023
以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的斗地主ai

ddz-ai 介绍 斗地主是一种扑克游戏。游戏最少由3个玩家进行,用一副54张牌(连鬼牌),其中一方为地主,其余两家为另一方,双方对战,先出完牌的一方获胜。 ddz-ai以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的系统,使其经过大量训练后,能在实际游戏中获

freefuiiismyname 88 May 15, 2022
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/

Casual GAN Papers 259 Dec 28, 2022
Neural Articulated Radiance Field

Neural Articulated Radiance Field NARF Neural Articulated Radiance Field Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada ICCV 2021 [Paper] [Co

Atsuhiro Noguchi 144 Jan 03, 2023
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
Evaluating deep transfer learning for whole-brain cognitive decoding

Evaluating deep transfer learning for whole-brain cognitive decoding This README file contains the following sections: Project description Repository

Armin Thomas 5 Oct 31, 2022
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Dangers of Bayesian Model Averaging under Covariate Shift This repository contains the code to reproduce the experiments in the paper Dangers of Bayes

Pavel Izmailov 25 Sep 21, 2022
LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs.

LocUNet LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs. The method utilizes accura

4 Oct 05, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
A python library for highly configurable transformers - easing model architecture search and experimentation.

A python library for highly configurable transformers - easing model architecture search and experimentation.

Anthony Fuller 51 Nov 20, 2022
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022