For visualizing the dair-v2x-i dataset

Overview

3D Detection & Tracking Viewer

The project is based on hailanyi/3D-Detection-Tracking-Viewer and is modified, you can find the original version of the code below: https://github.com/hailanyi/3D-Detection-Tracking-Viewer

This project was developed for viewing 3D object detection results from the Dair-V2X-I datasets.

It supports rendering 3D bounding boxes and rendering boxes on images.

Features

  • Captioning box ids(infos) in 3D scene
  • Projecting 3D box or points on 2D image

Design pattern

This code includes two parts, one for convert tools, other one for visualization of 3D detection results.

Change log

  • (2022.02.01) Adapted to the Dair-V2X-I dataset

Prepare data

  • Dair-V2X-I detection dataset
  • Convert the Dair-V2X-I dataset to kitti format using the conversion tool

Requirements (Updated 2021.11.2)

python==3.7.11
numpy==1.21.4
vedo==2022.0.1
vtk==8.1.2
opencv-python==4.1.1.26
matplotlib==3.4.3
open3d==0.14.1

It is recommended to use anaconda to create the visualization environment

conda create -n dair_vis python=3.8

To activate this environment, use

conda activate dair_vis

Install the requirements

pip install -r requirements.txt

To deactivate an active environment, use

conda deactivate

Convert tools

  • Prepare a dataset of the following structure:
  • "kitti_format" must be an empty folder to store the conversion result
  • "source_format" to store the source Dair-V2X-I datasets.
# For Dair-V2X-I Dataset  
dair_v2x_i
├── kitti_format
├── source_format
│   ├── single-infrastructure-side
│   │   ├── calib
│   │   │   ├── camera_intrinsic
│   │   │   └── virtuallidar_to_camera
│   │   └── label
│   │       ├── camera
│   │       └── virtuallidar
│   ├── single-infrastructure-side-example
│   │   ├── calib
│   │   │   ├── camera_intrinsic
│   │   │   └── virtuallidar_to_camera
│   │   ├── image
│   │   ├── label
│   │   │   ├── camera
│   │   │   └── virtuallidar
│   │   └── velodyne
│   ├── single-infrastructure-side-image
│   └── single-infrastructure-side-velodyne

  • If you have the same folder structure, you only need change the "root path" to your local path from config/config.yaml
  • Running the jupyter notebook server and open the "convert.ipynb"
  • The code is very simple , so there are no input parameters for advanced customization, you need to comment or copy the code to implemented separately following functions : -Convert calib files to KITTI format -Convert camera-based label files to KITTI format -Convert lidar-based label files to KITTI format -Convert image folders to KITTI format -Convert velodyne folders to KITTI format

After the convet you will get the following result. the

dair_v2x_i
├── kitti_format
│   ├── calib
│   ├── image_2
│   ├── label_2
│   ├── label_velodyne
│   └── velodyne
 
  • The label_2 base the camera label, and use the lidar label information replace the size information(w,h,l). In the camera view looks like better.
  • The label_velodyne base the velodyne label.
  • P2 represents the camera internal reference, which is a 3×3 matrix, not the same as KITTI. It convert frome the "cam_K" of the json file.
  • Tr_velo_to_cam: represents the camera to lidar transformation matrix, as a 3×4 matrix.

Usage

1. Set the path to the dataset folder used for input to the visualizer

If you have completed the conversion operation, the path should have been set correctly. Otherwise you need to set "root_path" in the config/config.yaml to the correct path

2. Choose whether camera or lidar based tagging for visualization

You need to set the "label_select" parameter in config.yaml to "cam" or "vel", to specify the label frome label_2 or velodyne_label.

2. Run and Terminate

  • You can start the program with the following command
python dair_3D_detection_viewer.py
  • Pressing space in the lidar window will display the next frame
  • Terminating the program is more complicated, you cannot terminate the program at static image status. You need to press the space quickly to make the frames play continuously, and when it becomes obvious that the system is overloaded with resources and the program can't respond, press Ctrl-C in the terminal window to terminate it. Try a few more times and you will eventually get the hang of it.

Notes on the Dair-V2X-I dataset

  • In the calib file of this dataset, "cam_K" is the real intrinsic matrix parameter of the camera, not "P". Although they are very close in value and structure.
  • There are multiple camera images with different focal and perspectives in this dataset, and the camera intrinsic matrix reference will change with each image file. Therefore, when using this dataset, please make sure that the calib file you are using corresponds to the image file (e.g. do not use only the 000000.txt parameter for all image files)
  • The sequence of files in this dataset is non-contiguous (e.g. missing the 000023), do not only use 00000 to lens(dataset) to get the sequence of file names directly.
  • The dataset provides optimized labels for both lidar and camera, and after testing, there are errors in the projection of the lidar label on camera (but the projection matrix is correct, only the label itself has issues). Likewise, there is a disadvantage of using the camera's label in lidar. Therefore it is recommended to use the corresponding label for lidar, and use the fused label for the camera.
  • There are some other objects in the label, for example you can see some trafficcone.
The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

SIGIR2021-EGLN The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization" Neural graph based Col

15 Dec 27, 2022
Level Based Customer Segmentation

level_based_customer_segmentation Level Based Customer Segmentation Persona Veri Seti kullanılarak müşteri segmentasyonu yapılmıştır. KOLONLAR : PRICE

Buse Yıldırım 6 Dec 21, 2021
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
Exploring Image Deblurring via Blur Kernel Space (CVPR'21)

Exploring Image Deblurring via Encoded Blur Kernel Space About the project We introduce a method to encode the blur operators of an arbitrary dataset

VinAI Research 118 Dec 19, 2022
202 Jan 06, 2023
DROPO: Sim-to-Real Transfer with Offline Domain Randomization

DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap

Gabriele Tiboni 8 Dec 19, 2022
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C

87 Dec 11, 2022
Code release for NeuS

NeuS We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inpu

Peng Wang 813 Jan 04, 2023
Deep Learning Theory

Deep Learning Theory 整理了一些深度学习的理论相关内容,持续更新。 Overview Recent advances in deep learning theory 总结了目前深度学习理论研究的六个方向的一些结果,概述型,没做深入探讨(2021)。 1.1 complexity

fq 103 Jan 04, 2023
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

EncT5 (Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks About Finetune T5 model for classification & r

Jangwon Park 34 Jan 01, 2023
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
Detect roadway lanes using Python OpenCV for project during the 5th semester at DHBW Stuttgart for lecture in digital image processing.

Find Line Detection (Image Processing) Identifying lanes of the road is very common task that human driver performs. It's important to keep the vehicl

LMF 4 Jun 21, 2022
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
Losslandscapetaxonomy - Taxonomizing local versus global structure in neural network loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes Int

Yaoqing Yang 8 Dec 30, 2022