This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

Related tags

Deep Learningecarenet
Overview

eCaReNet

This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction from H&E Images Combining Self-Attention MultipleInstance Learning with a Recurrent Neural Network, Dietrich, E., Fuhlert, P., Ernst, A., Sauter, G., Lennartz, M., Stiehl, H. S., Zimmermann, M., Bonn, S. - ML4H 2021)

eCaReNet takes histopathology images (TMA spots) as input and predicts a survival curve and a risk score for individual patients. The network consists of an optional self-attention layer, an RNN and an attention based Mulitple Instance Learning module for explainability. To increase model performance, we suggest to include a binary prediction of a relapse as input to the model. alt text

TL;DR

  • store your dataset information in a .csv file

  • make your own my_config.yaml, following the example in config.yaml

  • run $ python train_model.py with my_config.yaml

Requirements and Installation

  • Python and Tensorflow
  • npm install -g omniboard to view results in browser and inspect experiments

Data preprocessing

All annotations of your images need to be stored in a .csv file with the image path and annotations as columns. You need separate csv files for your training, validation and test sets. Here is an example:

img_path censored relapse_time survived_2years ISUP_score
img1.png 0 80.3 1 3

The columns can be named as you wish, you need to tell python which columns to use in the config file ↓

config file

The config file (config.yaml) is needed to define the directories where the images and training, validation and test .csv files are stored. Further, you can choose whether to train a classification (for M_ISUP or M_Bin) or the survival model eCaReNet, which loss function and optimizer to use. Also the preprocessing is defined here (patching, resizing, ...) Details are found in config.yaml. It is best to create a custom my_config.yaml file and run the code as

$ python train_model.py with my_config.yaml 

You can also change single parameters in the command line like

$ python train_model.py with my_config.yaml general.seed="13" 

Training procedure

As recommended in our paper, we suggest to first train M_ISUP with config_isup.yaml. So train your base network (Inception or other) on a classification task as a transfer learning task. Second, train a binary classifier with config_bin.yaml, choose an appropriate time point to base the decision on. Here, you need to load the pretrained model from step one, do not load Inception or other keras models. For the third step the prediction from model two M_Bin are needed, so please store the information in the .csv file. Then again, load model from step one, and this time include the predictions as additional input and train.

Unittests

For most functions, a unittest is given in the test folder. This can be used to test if the function works correctly after adapting it (e.g. add more functionality or speed up). Further, it can be used for debugging to find errors or to find out what the function is actually doing. This is faster than running the whole code.

Docker

In the docker_context folder, the Dockerfile and requirements are stored. To build a docker image run

$ "docker build -t IMAGE_NAME:DATE docker_context"
$ docker build  -t ecarenet_docker:2021_10 docker_context

To use the image, run something like the following. Needs to be adapted to your own paths and resources

$ docker run --gpus=all --cpuset-cpus=5,6 --user `id --user`:`id --group` -it --rm -v /home/UNAME/PycharmProjects/ecarenet:/opt/project -v /PATH/TO/DATA:/data --network NETWORK_NAME--name MY_DOCKER_CONTAINER ecarenet_docker:2021_10 bash

More information on docker can be found here: https://docs.docker.com/get-started/

sacred

We use sacred (https://sacred.readthedocs.io/en/stable/) and a MongoDB (https://sacred.readthedocs.io/en/stable/observers.html https://www.mongodb.com/) to store all experiments. For each training run, a folder with an increasing id will be created automatically and all information about the run will be stored in that folder, like resulting weights, plots, metrics and losses. Which folder this is, is written in settings/default_settings and in the config in training.model_save_path.

The code works without mongodb, if you want. All results will be stored. If you do want to use the mongodb, you need to run a docker container with a mongoDB:

$ docker run -d -p PORTNUMBER:27017 -v ./my_data_folder:/data/db --name name_of_my_mongodb mongo

Create a network:

$ docker network create NETWORK_NAME

Attach container to network

$ docker network connect NETWORK_NAME name_of_my_mongodb

Then during training, the --network NETWORK_NAME property needs to be set. Use omniboard to inspect results:

$ omniboard -m localhost:PORTNUMBER:sacred

Tensorflow

Using tensorflow tf.data speeds up the data generation and preprocessing steps. If the dataset is very large, it can be cached with tf.cache() either in memory or to a file with tf.cache('/path/to/folder/plus/filename') [in dataset_creation/dataset_main.py]. Using tensorflow, it is also best to not overly use numpy functions or to decorate them with tf.function. Functions decorated with @tf.function will be included in the tensorflow graph in the first step and not be created again and again. For debugging, you need to remove the tf.function decorator, because otherwise the function (and breakpoints inside) will be skipped.

Owner
Institute of Medical Systems Biology
Institute of Medical Systems Biology
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
Official implementation for CVPR 2021 paper: Adaptive Class Suppression Loss for Long-Tail Object Detection

Adaptive Class Suppression Loss for Long-Tail Object Detection This repo is the official implementation for CVPR 2021 paper: Adaptive Class Suppressio

CASIA-IVA-Lab 67 Dec 04, 2022
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
PECOS - Prediction for Enormous and Correlated Spaces

PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i

Amazon 387 Jan 04, 2023
Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022.

Jadena Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022. arXiv

Qing Guo 13 Nov 29, 2022
Jiminy Cricket Environment (NeurIPS 2021)

Jiminy Cricket This is the repository for "What Would Jiminy Cricket Do? Towards Agents That Behave Morally" by Dan Hendrycks*, Mantas Mazeika*, Andy

Dan Hendrycks 15 Aug 29, 2022
Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

Divide and Remaster Utility Tools Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper The DnR d

Darius Petermann 46 Dec 11, 2022
Aspect-Sentiment-Multiple-Opinion Triplet Extraction (NLPCC 2021)

The code and data for the paper "Aspect-Sentiment-Multiple-Opinion Triplet Extraction" Requirements Python 3.6.8 torch==1.2.0 pytorch-transformers==1.

慢半拍 5 Jul 02, 2022
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters"

Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters" Pipeline of CLIP-Adapter CLIP-Adapter is a drop-in modul

peng gao 157 Dec 26, 2022
.NET bindings for the Pytorch engine

TorchSharp TorchSharp is a .NET library that provides access to the library that powers PyTorch. It is a work in progress, but already provides a .NET

Matteo Interlandi 17 Aug 30, 2021
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning This repository contains the code and relevant instructions

XiaoMing 5 Aug 19, 2022
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
Official code of the paper "ReDet: A Rotation-equivariant Detector for Aerial Object Detection" (CVPR 2021)

ReDet: A Rotation-equivariant Detector for Aerial Object Detection ReDet: A Rotation-equivariant Detector for Aerial Object Detection (CVPR2021), Jiam

csuhan 334 Dec 23, 2022
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021
A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities

MPT A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities. Implementation for our AAAI 2022 paper: Multi-

yidiLi 4 May 08, 2022