This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation)

Related tags

Deep Learningqb-norm
Overview

This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation)

Usage example

python dynamic_inverted_softmax.py --sims_train_test_path msrvtt/tt-ce-train-captions-test-videos-seed0.pkl --sims_test_path msrvtt/tt-ce-test-captions-test-videos-seed0.pkl --test_query_masks_path msrvtt/tt-ce-test-query_masks.pkl

To test QB-Norm on your own data you need to:

  1. Extract the similarity matrix between the caption from the training split and the videos from the testing split path/to/sims/train/test
  2. Extract testing split similarity matrix (similarities between testing captions and testing video) path/to/sims/test
  3. Run QB-Norm
python dynamic_inverted_softmax.py --sims_train_test_path path/to/sims/train/test --sims_test_path path/to/sims/test

Data

The similarity matrices for each method were extracted using the official repositories as follows: CE+, TT-CE+, CLIP2Video, CLIP4Clip (for CLIP4Clip we used the official repo to train from scratch new models since they do not provide pre-trained weights), CLIP, MMT, Audio-Retrieval.

You can download the extracted similarity matrices for training and testing here: MSRVTT, MSVD, DiDeMo, LSMDC.

Text-Video retrieval results

QB-Norm Results on MSRVTT Benchmark

Model Split Task [email protected] [email protected] [email protected] MdR Geom
CE+ Full t2v 14.4(0.1) 37.4(0.1) 50.2(0.1) 10.0(0.0) 30.0(0.1)
CE+ (+QB-Norm) Full t2v 16.4(0.0) 40.3(0.1) 52.9(0.1) 9.0(0.0) 32.7(0.1)
TT-CE+ Full t2v 14.9(0.1) 38.3(0.1) 51.5(0.1) 10.0(0.0) 30.9(0.1)
TT-CE+ (+QB-Norm) Full t2v 17.3(0.0) 42.1(0.2) 54.9(0.1) 8.0(0.0) 34.2(0.1)

QB-Norm Results on MSVD Benchmark

Model Split Task [email protected] [email protected] [email protected] MdR Geom
TT-CE+ Full t2v 25.4(0.3) 56.9(0.4) 71.3(0.2) 4.0(0.0) 46.9(0.3)
TT-CE+ (+QB-Norm) Full t2v 26.6(1.0) 58.6(1.3) 71.8(1.1) 4.0(0.0) 48.2(1.2)
CLIP2Video Full t2v 47.0 76.8 85.9 2.0 67.7
CLIP2Video (+QB-Norm) Full t2v 48.0 77.9 86.2 2.0 68.5

QB-Norm Results on DiDeMo Benchmark

Model Split Task [email protected] [email protected] [email protected] MdR Geom
TT-CE+ Full t2v 21.6(0.7) 48.6(0.4) 62.9(0.6) 6.0(0.0) 40.4(0.4)
TT-CE+ (+QB-Norm) Full t2v 24.2(0.7) 50.8(0.7) 64.4(0.1) 5.3(0.5) 43.0(0.2)
CLIP4Clip Full t2v 43.0 70.5 80.0 2.0 62.4
CLIP4Clip (+QB-Norm) Full t2v 43.5 71.4 80.9 2.0 63.1

QB-Norm Results on LSMDC Benchmark

Model Split Task [email protected] [email protected] [email protected] MdR Geom
TT-CE+ Full t2v 17.2(0.4) 36.5(0.6) 46.3(0.3) 13.7(0.5) 30.7(0.3)
TT-CE+ (+QB-Norm) Full t2v 17.8(0.4) 37.7(0.5) 47.6(0.6) 12.7(0.5) 31.7(0.3)
CLIP4Clip Full t2v 21.3 40.0 49.5 11.0 34.8
CLIP4Clip (+QB-Norm) Full t2v 22.4 40.1 49.5 11.0 35.4

QB-Norm Results on VaTeX Benchmark

Model Split Task [email protected] [email protected] [email protected] MdR Geom
TT-CE+ Full t2v 53.2(0.2) 87.4(0.1) 93.3(0.0) 1.0(0.0) 75.7(0.1)
TT-CE+ (+QB-Norm) Full t2v 54.8(0.1) 88.2(0.1) 93.8(0.1) 1.0(0.0) 76.8(0.0)
CLIP2Video Full t2v 57.4 87.9 93.6 1.0 77.9
CLIP2Video (+QB-Norm) Full t2v 58.8 88.3 93.8 1.0 78.7

QB-Norm Results on QuerYD Benchmark

Model Split Task [email protected] [email protected] [email protected] MdR Geom
CE+ Full t2v 13.2(2.0) 37.1(2.9) 50.5(1.9) 10.3(1.2) 29.1(2.2)
CE+ (+QB-Norm) Full t2v 14.1(1.8) 38.6(1.3) 51.1(1.6) 10.0(0.8) 30.2(1.7)
TT-CE+ Full t2v 14.4(0.5) 37.7(1.7) 50.9(1.6) 9.8(1.0) 30.3(0.9)
TT-CE+ (+QB-Norm) Full t2v 15.1(1.6) 38.3(2.4) 51.2(2.8) 10.3(1.7) 30.9(2.3)

Text-Image retrieval results

QB-Norm Results on MSCoCo Benchmark

Model Split Task [email protected] [email protected] [email protected] MdR Geom
CLIP 5k t2i 30.3 56.1 67.1 4.0 48.5
CLIP (+QB-Norm) 5k t2i 34.8 59.9 70.4 3.0 52.8
MMT-Oscar 5k t2i 52.2 80.2 88.0 1.0 71.7
MMT-Oscar (+QB-Norm) 5k t2i 53.9 80.5 88.1 1.0 72.6

Text-Audio retrieval results

QB-Norm Results on AudioCaps Benchmark

Model Split Task [email protected] [email protected] [email protected] MdR Geom
AR-CE Full t2a 23.1(0.6) 55.1(0.7) 70.7(0.6) 4.7(0.5) 44.8(0.7)
AR-CE (+QB-Norm) Full t2a 23.9(0.2) 57.1(0.3) 71.6(0.4) 4.0(0.0) 46.0(0.3)

References

If you find this code useful or use the extracted similarity matrices, please consider citing:

@misc{bogolin2021cross,
      title={Cross Modal Retrieval with Querybank Normalisation}, 
      author={Simion-Vlad Bogolin and Ioana Croitoru and Hailin Jin and Yang Liu and Samuel Albanie},
      year={2021},
      eprint={2112.12777},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer

ELSA: Enhanced Local Self-Attention for Vision Transformer By Jingkai Zhou, Pich

DamoCV 87 Dec 19, 2022
A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets

HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit

1 Jan 10, 2022
Speeding-Up Back-Propagation in DNN: Approximate Outer Product with Memory

Approximate Outer Product Gradient Descent with Memory Code for the numerical experiment of the paper Speeding-Up Back-Propagation in DNN: Approximate

2 Mar 02, 2022
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
Parallel Latent Tree-Induction for Faster Sequence Encoding

FastTrees This repository contains the experimental code supporting the FastTrees paper by Bill Pung. Software Requirements Python 3.6, NLTK and PyTor

Bill Pung 4 Mar 29, 2022
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

123 Dec 27, 2022
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
LIAO Shuiying 6 Dec 01, 2022
WSDM‘2022: Knowledge Enhanced Sports Game Summarization

Knowledge Enhanced Sports Game Summarization Cooming Soon! :) Data will be released after approval process. Code will be published once the author of

Jiaan Wang 14 Jul 13, 2022
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020

Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This

Colin Graber 48 Dec 23, 2022
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
ncnn is a high-performance neural network inference framework optimized for the mobile platform

ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme

Tencent 16.2k Jan 05, 2023
U-2-Net: U Square Net - Modified for paired image training of style transfer

U2-Net: U Square Net Modified for paired image training of style transfer This is an unofficial repo making use of the code which was made available b

Doron Adler 43 Oct 03, 2022
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022
Matthew Colbrook 1 Apr 08, 2022
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

CodingMan 45 Dec 12, 2022