This repository contains code and data for "On the Multimodal Person Verification Using Audio-Visual-Thermal Data"

Overview

trimodal_person_verification

This repository contains the code, and preprocessed dataset featured in "A Study of Multimodal Person Verification Using Audio-Visual-Thermal Data".

Person verification is the general task of verifying person’s identity using various biometric characteristics. We study an approach to multimodal person verification using audio, visual, and thermal modalities. In particular, we implemented unimodal, bimodal, and trimodal verification systems using the state-of-the-art deep learning architectures and compared their performance under clean and noisy conditions.

Dependencies

pip install -r requirements.txt

Dataset

In this work, we utilized the SpeakingFaces dataset to train, validate, and test the person verification systems. SpeakingFaces is a publicly available multimodal dataset comprised of audio, visual, and thermal data streams. The preprocessed data used for our experiments can be downloaded from Google Drive.

The data directory contains the compressed version of the preprocessed data used for the reported experiments. For each utterance, only the first frame (visual and thermal) is selected. The train set is split into 5 parts that should be extracted into the same location.

The data/metadata subdirectory contains lists prepared for the train, validation, and test sets following the format of VoxCeleb. In particular, the train list contains the paths to the recordings and the corresponding subject identifiers. The validation and test lists consist of randomly generated positive and negative pairs. For each subject, the same number of positive and negative pairs were selected. In total, the numbers of pairs in the validation and test sets are 38,000 and 46,200, respectively.

Note, to run noisy training and evaluation, you should first download the MUSAN dataset.

See trainSpeakerNet.py for details on where the data should be stored.

Training examples : clean data

Unimodal models

python trainSpeakerNet.py --model ResNetSE34Multi --modality wav --log_input True --trainfunc angleproto --max_epoch 1500 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.01 --seed 1 --save_path exps/wav/exp1 
python trainSpeakerNet.py --model ResNetSE34Multi --modality rgb --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.01 --seed 1 --save_path exps/rgb/exp1 
python trainSpeakerNet.py --model ResNetSE34Multi --modality thr --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.01 --seed 1 --save_path exps/thr/exp1 

Multimodal models

python trainSpeakerNet.py --model ResNetSE34Multi --modality wavrgb --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.01 --seed 1 --save_path exps/wavrgb/exp1 
python trainSpeakerNet.py --model ResNetSE34Multi --modality wavrgbthr --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.1 --seed 1 --save_path exps/wavrgb/exp1 

Training examples : noisy data

Unimodal models

python trainSpeakerNet.py --model ResNetSE34Multi --modality wav --noisy_train True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --max_epoch 1500 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.001 --seed 1 --save_path exps/wav/exp2
python trainSpeakerNet.py --model ResNetSE34Multi --modality rgb --noisy_train True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.01 --seed 1 --save_path exps/rgb/exp2 
python trainSpeakerNet.py --model ResNetSE34Multi --modality thr --noisy_train True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.01 --seed 1 --save_path exps/thr/exp2 

Multimodal models

python trainSpeakerNet.py --model ResNetSE34Multi --modality wavrgb --noisy_train True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.01 --seed 1 --save_path exps/wavrgb/exp2 
python trainSpeakerNet.py --model ResNetSE34Multi --modality wavrgbthr --noisy_train True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.1 --seed 1 --save_path exps/wavrgb/exp2 

Evaluating pretrained models: clean test data

Unimodal models

python trainSpeakerNet.py --model ResNetSE34Multi --modality wav --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/wav/exp1 
python trainSpeakerNet.py --model ResNetSE34Multi --modality rgb --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt   --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/rgb/exp1 
python trainSpeakerNet.py --model ResNetSE34Multi --modality thr --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt   --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/thr/exp1 

Multimodal models

python trainSpeakerNet.py --model ResNetSE34Multi --modality wavrgb  --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt   --log_input True  --trainfunc angleproto --eval_frames 200 --save_path exps/wavrgb/exp1 
python trainSpeakerNet.py --model ResNetSE34Multi --modality wavrgbthr --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt   --log_input True  --trainfunc angleproto --eval_frames 200 --save_path exps/wavrgb/exp1 

Evaluating pretrained models: noisy test data

Unimodal models

python revalidate.py --model ResNetSE34Multi --modality wav --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/wav/exp2

python revalidate.py --model ResNetSE34Multi --modality wav --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt    --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/wav/exp2
python revalidate.py --model ResNetSE34Multi --modality rgb --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/rgb/exp2

python revalidate.py --model ResNetSE34Multi --modality rgb --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt    --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/rgb/exp2 
python revalidate.py --model ResNetSE34Multi --modality thr --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/thr/exp2

python revalidate.py --model ResNetSE34Multi --modality thr --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt    --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/thr/exp2 

Multimodal models

python revalidate.py --model ResNetSE34Multi --modality wavrgb --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/wavrgb/exp2

python revalidate.py --model ResNetSE34Multi --modality wavrgb --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt    --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/wavrgb/exp2 
python revalidate.py --model ResNetSE34Multi --modality wavrgbthr --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/wavrgbthr/exp2

python revalidate.py --model ResNetSE34Multi --modality wavrgbthr --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt    --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/wavrgb/exp2 
Owner
ISSAI
Institute of Smart Systems and Artificial Intelligence
ISSAI
SlotRefine: A Fast Non-Autoregressive Model forJoint Intent Detection and Slot Filling

SlotRefine: A Fast Non-Autoregressive Model for Joint Intent Detection and Slot Filling Reference Main paper to be cited (Di Wu et al., 2020) @article

Moore 34 Nov 03, 2022
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022
Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications

Labelbox Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications. Use this github repository to help you s

labelbox 1.7k Dec 29, 2022
Proto-RL: Reinforcement Learning with Prototypical Representations

Proto-RL: Reinforcement Learning with Prototypical Representations This is a PyTorch implementation of Proto-RL from Reinforcement Learning with Proto

Denis Yarats 74 Dec 06, 2022
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
Learning where to learn - Gradient sparsity in meta and continual learning

Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co

Johannes Oswald 28 Dec 09, 2022
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
An implementation of shampoo

shampoo.pytorch An implementation of shampoo, proposed in Shampoo : Preconditioned Stochastic Tensor Optimization by Vineet Gupta, Tomer Koren and Yor

Ryuichiro Hataya 69 Sep 10, 2022
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab

DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y

779 Jan 05, 2023
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 02, 2023
Official implementation of the NeurIPS 2021 paper Online Learning Of Neural Computations From Sparse Temporal Feedback

Online Learning Of Neural Computations From Sparse Temporal Feedback This repository is the official implementation of the NeurIPS 2021 paper Online L

Lukas Braun 3 Dec 15, 2021
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 04, 2023
使用yolov5训练自己数据集(详细过程)并通过flask部署

使用yolov5训练自己的数据集(详细过程)并通过flask部署 依赖库 torch torchvision numpy opencv-python lxml tqdm flask pillow tensorboard matplotlib pycocotools Windows,请使用 pycoc

HB.com 19 Dec 28, 2022