This repository contains code and data for "On the Multimodal Person Verification Using Audio-Visual-Thermal Data"

Overview

trimodal_person_verification

This repository contains the code, and preprocessed dataset featured in "A Study of Multimodal Person Verification Using Audio-Visual-Thermal Data".

Person verification is the general task of verifying person’s identity using various biometric characteristics. We study an approach to multimodal person verification using audio, visual, and thermal modalities. In particular, we implemented unimodal, bimodal, and trimodal verification systems using the state-of-the-art deep learning architectures and compared their performance under clean and noisy conditions.

Dependencies

pip install -r requirements.txt

Dataset

In this work, we utilized the SpeakingFaces dataset to train, validate, and test the person verification systems. SpeakingFaces is a publicly available multimodal dataset comprised of audio, visual, and thermal data streams. The preprocessed data used for our experiments can be downloaded from Google Drive.

The data directory contains the compressed version of the preprocessed data used for the reported experiments. For each utterance, only the first frame (visual and thermal) is selected. The train set is split into 5 parts that should be extracted into the same location.

The data/metadata subdirectory contains lists prepared for the train, validation, and test sets following the format of VoxCeleb. In particular, the train list contains the paths to the recordings and the corresponding subject identifiers. The validation and test lists consist of randomly generated positive and negative pairs. For each subject, the same number of positive and negative pairs were selected. In total, the numbers of pairs in the validation and test sets are 38,000 and 46,200, respectively.

Note, to run noisy training and evaluation, you should first download the MUSAN dataset.

See trainSpeakerNet.py for details on where the data should be stored.

Training examples : clean data

Unimodal models

python trainSpeakerNet.py --model ResNetSE34Multi --modality wav --log_input True --trainfunc angleproto --max_epoch 1500 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.01 --seed 1 --save_path exps/wav/exp1 
python trainSpeakerNet.py --model ResNetSE34Multi --modality rgb --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.01 --seed 1 --save_path exps/rgb/exp1 
python trainSpeakerNet.py --model ResNetSE34Multi --modality thr --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.01 --seed 1 --save_path exps/thr/exp1 

Multimodal models

python trainSpeakerNet.py --model ResNetSE34Multi --modality wavrgb --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.01 --seed 1 --save_path exps/wavrgb/exp1 
python trainSpeakerNet.py --model ResNetSE34Multi --modality wavrgbthr --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.1 --seed 1 --save_path exps/wavrgb/exp1 

Training examples : noisy data

Unimodal models

python trainSpeakerNet.py --model ResNetSE34Multi --modality wav --noisy_train True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --max_epoch 1500 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.001 --seed 1 --save_path exps/wav/exp2
python trainSpeakerNet.py --model ResNetSE34Multi --modality rgb --noisy_train True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.01 --seed 1 --save_path exps/rgb/exp2 
python trainSpeakerNet.py --model ResNetSE34Multi --modality thr --noisy_train True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.01 --seed 1 --save_path exps/thr/exp2 

Multimodal models

python trainSpeakerNet.py --model ResNetSE34Multi --modality wavrgb --noisy_train True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.01 --seed 1 --save_path exps/wavrgb/exp2 
python trainSpeakerNet.py --model ResNetSE34Multi --modality wavrgbthr --noisy_train True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --max_epoch 600 --batch_size 100 --nPerSpeaker 9 --max_frames 200 --eval_frames 200 --weight_decay 0.1 --seed 1 --save_path exps/wavrgb/exp2 

Evaluating pretrained models: clean test data

Unimodal models

python trainSpeakerNet.py --model ResNetSE34Multi --modality wav --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/wav/exp1 
python trainSpeakerNet.py --model ResNetSE34Multi --modality rgb --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt   --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/rgb/exp1 
python trainSpeakerNet.py --model ResNetSE34Multi --modality thr --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt   --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/thr/exp1 

Multimodal models

python trainSpeakerNet.py --model ResNetSE34Multi --modality wavrgb  --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt   --log_input True  --trainfunc angleproto --eval_frames 200 --save_path exps/wavrgb/exp1 
python trainSpeakerNet.py --model ResNetSE34Multi --modality wavrgbthr --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt   --log_input True  --trainfunc angleproto --eval_frames 200 --save_path exps/wavrgb/exp1 

Evaluating pretrained models: noisy test data

Unimodal models

python revalidate.py --model ResNetSE34Multi --modality wav --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/wav/exp2

python revalidate.py --model ResNetSE34Multi --modality wav --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt    --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/wav/exp2
python revalidate.py --model ResNetSE34Multi --modality rgb --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/rgb/exp2

python revalidate.py --model ResNetSE34Multi --modality rgb --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt    --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/rgb/exp2 
python revalidate.py --model ResNetSE34Multi --modality thr --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/thr/exp2

python revalidate.py --model ResNetSE34Multi --modality thr --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt    --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/thr/exp2 

Multimodal models

python revalidate.py --model ResNetSE34Multi --modality wavrgb --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/wavrgb/exp2

python revalidate.py --model ResNetSE34Multi --modality wavrgb --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt    --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/wavrgb/exp2 
python revalidate.py --model ResNetSE34Multi --modality wavrgbthr --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/wavrgbthr/exp2

python revalidate.py --model ResNetSE34Multi --modality wavrgbthr --eval True --valid_model True --test_path data/test --test_list data/metadata/test_list.txt    --noisy_eval True --p_noise 0.3 --snr 8 --log_input True --trainfunc angleproto --eval_frames 200 --save_path exps/wavrgb/exp2 
Owner
ISSAI
Institute of Smart Systems and Artificial Intelligence
ISSAI
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023
Implementation of ConvMixer-Patches Are All You Need? in TensorFlow and Keras

Patches Are All You Need? - ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in t

Sayan Nath 8 Oct 03, 2022
Efficient semidefinite bounds for multi-label discrete graphical models.

Low rank solvers #################################### benchmark/ : folder with the random instances used in the paper. ############################

1 Dec 08, 2022
🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
Tutorial on scikit-learn and IPython for parallel machine learning

Parallel Machine Learning with scikit-learn and IPython Video recording of this tutorial given at PyCon in 2013. The tutorial material has been rearra

Olivier Grisel 1.6k Dec 26, 2022
NeRF Meta-Learning with PyTorch

NeRF Meta Learning With PyTorch nerf-meta is a PyTorch re-implementation of NeRF experiments from the paper "Learned Initializations for Optimizing Co

Sanowar Raihan 78 Dec 18, 2022
Fast, accurate and reliable software for algebraic CT reconstruction

KCT CBCT Fast, accurate and reliable software for algebraic CT reconstruction. This set of software tools includes OpenCL implementation of modern CT

Vojtěch Kulvait 4 Dec 14, 2022
A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

BraVe This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short. The model provided in this package wa

DeepMind 44 Nov 20, 2022
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
Python Implementation of Chess Playing AI with variable difficulty

Chess AI with variable difficulty level implemented using the MiniMax AB-Pruning Algorithm

Ali Imran 7 Feb 20, 2022
Colab notebook and additional materials for Python-driven analysis of redlining data in Philadelphia

RedliningExploration The Google Colaboratory file contained in this repository contains work inspired by a project on educational inequality in the Ph

Benjamin Warren 1 Jan 20, 2022
Applying PVT to Semantic Segmentation

Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio

35 Nov 30, 2022
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
Heart Arrhythmia Classification

This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for cla

4 Nov 02, 2022
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
Alfred-Restore-Iterm-Arrangement - An Alfred workflow to restore iTerm2 window Arrangements

Alfred-Restore-Iterm-Arrangement This alfred workflow will list avaliable iTerm2

7 May 10, 2022
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Jiwoon Ahn 337 Dec 15, 2022