Glyph-graph - A simple, yet versatile, package for graphing equations on a 2-dimensional text canvas

Overview

Glyth Graph

Revision for 0.01

A simple, yet versatile, package for graphing equations on a 2-dimensional text canvas

List of contents:

  1. Brief Introduction
  2. Process Overview
  3. Technical Overview
  4. Function Glossary
  5. Code Example
  6. Legal (MIT license)

Brief Introduction


Glyth Graph is an open-source python package, for graphing equations onto a 2-dimensional array (named the canvas) with a variety of arguments to draw within a specific range and bound. Scaling to the width and height of the canvas in proportion

.

Process Overview


glyth_graph_basic():

Upon attaching the constructor to an object a 2D array with the declared resolution size will be filled with the chosen blank_glyth, named the canvas.

draw_graph():

  1. Check whether the given char_x (x-axis position of the canvas) is within the bounds of the canvas width as stated in the resolution.
  2. If not formatted the equation will be simplified into an expression without 'y', '=' and any spaces.
  3. If not given the y-axis bounds for the equation within the x-axis range will be calculated by repetedly incrementing the x variable.
  4. Then an x variable will be calculated by mapping the char_x from the width to the x-axis range of the equation, equally distributing each increment of char_x in the x-axis.
  5. The x variable will be substitued into the equation to form a y-axis value, which will be mapped from the y-axis bounds of the equation to the canvas height.
  6. Finally, the 2D coordinate of the char_x and char_y value on the canvas will be replaced by the chosen glyth.

Technical Overview


The package operates on mapping values between the x and f(x) from the graph equation to the given resolution of the canvas, translating coordinates with a non-uniform scaling factor to draw a glyth by a 2D index.


Notation form of the equation for mapping charx to x


x-axis Value Equation


where rangefrom and rangeto are respectively the given x-axis region of the equation to draw.



Notation form of the equation for mapping f(x), equal to y, to chary


y-axis Canvas Index Equation


where max and min are respectively the calculated (or given) maximum and minimum y-axis values for the equation within the x-axis region.

Function Glossary


graph_basic(resolution: str, blank_glyth: str = None) -> None

The constructor of the class to create an attached object, setup the canvas array with the arguements given, both the size and blank (background) glyth

 - resolution: the width by the height of the canvas measured in character glyths | 'x'.join([width, height])
 - blank_glyth: the background glyth used for spacing the graph

format_equation(equation: str) -> str

Format the graph equation such that all unecessary characters are removed to be processed, this includes removal of 'y' and '=' if given an equation to form an expression and all ' ' (spaces) present

- equation: the mathematical equation of the graph going to be drawn

y_bounds(self, equation: str, x_range: tuple) -> tuple

Calculate the upper and lower bounds in the y-axis of a graph equation between the given x-axis range, to be used later for mapping positions

- equation: the mathematical equation of the graph going to be drawn
- x_range: a tuple of the x-axis range between which the graph will be used, all outside this is unnecessary

draw_graph(char_x: int, equation: str, glyth: str, x_range: tuple, y_bounds: tuple = None) -> list:

Draw a glyth onto the canvas array dependent on given arguments in relation to the graph equation, including the x-axis range and y-axis bounds of the 2-dimensional section of the graph and character position along the canvas

- char_x: the x_axis glyth position of the canvas, such that it starts to the leftmost position (0) to the rightmost (canvas width - 1) | 0 <= char_x < canvas width
- equation: the mathematical equation of the graph going to be drawn
- glyth: the character/s to be drawn onto the canvas at the calculated coordinate relative to the graph equation
- x_range: a tuple of the x-axis range between which the graph will be used, all outside this is unnecessary | (range_from, range_to)
- y_bounds: a tuple of the y-axis bounds for the x-axis region of the graph, including both the minimum and maximum values | (min, max)

clear_canvas() -> None:

Clear the canvas by replacing all indicies in the array with the blank glyth assigned in the constructor, removing any graphs drawn

print_canvas(clear: bool = None) -> None:

Pretty print the canvas array into equal rows of the set width with newline character moving to the next row, as each index is printed incrementally

- clear: a boolean value (either True or False) whether to clear the each canvas array index after printing the index | True or False

Code Example


A simple code example showing the usage of all functions in the package, with the user inputting variables to produce the wanted graph/s onto the canvas array as random Base64 character glyths:

from glyth_graph import graph_basic
from random import choice

character_set = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/'

print('---Glyth Graph---')

print('\n---Resolution---')
width = int(input('Width (chars): '))
height = int(input('Height (chars): '))

glyth_graph = graph_basic(
    resolution = 'x'.join([str(width), str(height)]),
    blank_glyth = '  '
)

while True:
    print('\n---Graph Properties---')
    equation = glyth_graph.format_equation(input('Equation: '))
    range_from, range_to = int(input('x-axis From: ')), int(input('x-axis To: '))
    print()

    bounds = glyth_graph.y_bounds(
        equation = equation,
        x_range = (range_from, range_to)
    )

    for char_x in range(0, width):
        glyth_graph.draw_graph(
            char_x = char_x,
            equation = equation,
            glyth = choice(character_set),
            x_range = (range_from, range_to),
            y_bounds = bounds
        )

    glyth_graph.print_canvas()


An example of an output to the program, which can vary with custom values for all given inputs, pretty printing the canvas array:

---Glyth Graph---

---Resolution---
Width (chars): 100
Height (chars): 30

Width: 100 | Height: 30

---Graph Properties---
Equation: y = math.sin(x)
x-axis From: 0
x-axis To: 6.283185

                     LbvwLB+K
                  Rp8        49D
                MB              FgW
              Kt                   O
            i6                      +w
           t                          f
          z                            LZ
        k7                               q
       9                                  q
      Y                                    G
     3                                      yP
    r                                         c
   9                                           h
  C                                             4
 f                                               K
l                                                 M                                               oe
                                                   o                                             7
                                                    y                                           n
                                                     O                                         e
                                                      tf                                      0
                                                        M                                    u
                                                         r                                  O
                                                          I                               lv
                                                           o8                            w
                                                             L                          A
                                                              Q2                      uO
                                                                w                   LD
                                                                 zvu              8x
                                                                    nGl        xMw
                                                                       XsohPTDx


License (MIT)



Permissions Conditions Limitations
Commercial use License and copyright notice Liability
Distribution Warranty
Modification
Private use
MIT License

Copyright (c) 2021 Ivan (GitHub: ivanl-exe, E-Mail: [email protected])

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Owner
Ivan
Advanced programmer, envisioning the future of technology and influence from Web3 and blockchains.
Ivan
Parking management project which generates barcode parking ticket with user-friendly Tkinter program GUI

Parking-management-system Parking management project which generates barcode parking ticket with user-friendly Tkinter program GUI How to run Download

1 Jul 03, 2022
A Toolbox for Image Feature Matching and Evaluations

This is a toolbox repository to help evaluate various methods that perform image matching from a pair of images.

Qunjie Zhou 342 Dec 29, 2022
DrawBot is a powerful, free application for macOS that invites you to write Python scripts to generate two-dimensional graphics

DrawBot is a powerful, free application for macOS that invites you to write Python scripts to generate two-dimensional graphics.

Frederik Berlaen 344 Jan 06, 2023
💯 Watermark your images with one line of command

Watermarker 💯 Watermark your images with one line of command 🧐 $ pip3 install

Orhan Emre Dikicigil 3 May 01, 2022
A scalable implementation of WobblyStitcher for 3D microscopy images

WobblyStitcher Introduction A scalable implementation of WobblyStitcher Dependencies $ python -m pip install numpy scikit-image Visualization ImageJ

CSE Lab, ETH Zurich 7 Jul 25, 2022
Simple utility to tinker with OPlus images

OPlus image utilities Prerequisites Linux running kernel 5.4 or up (check with uname -r) Image rebuilding Used to rebuild read-only erofs images into

Wiley Lau 15 Dec 28, 2022
Simplest QRGenerator with a cool feature (-sh=True :D)

Simple QR-Codes Generator :D Generates QR-codes, nothing more and nothing less . How to use Just run ./install.sh to set all the dependencies up, th

RENNAARENATA 1 Dec 11, 2021
Sombra is simple Raytracer written in pure Python.

Sombra Sombra is simple Raytracer written in pure Python. It's main purpose is to help understand how raytracing works with a clean code. If you are l

Hernaldo Jesus Henriquez Nuñez 10 Jul 16, 2022
Converting Images Into Minecraft Houses

Converting Images Into Minecraft Houses In this particular project, we turned a 2D Image into Minecraft pixel art and then scaled it in 3D such that i

Mathias Oliver Valdbjørn Jørgensen 1 Feb 02, 2022
Python Digital Art Generator

Python Digital Art Generator The main goal of this repository is to generate all possible layers permutations given by the user in order to get unique

David Cuentas Mar 3 Mar 12, 2022
A little Python tool to convert a TrueType (ttf/otf) font into a PNG for use in demos.

font2png A little Python tool to convert a TrueType (ttf/otf) font into a PNG for use in demos. To use from command line it expects python3 to be at /

Rich Elmes 3 Dec 22, 2021
Python scripts for semi-automated morphometric analysis of atolls from Landsat satellite Imagery.

AtollGeoMorph Python scripts for semi-automated morphometric analysis of atolls from Landsat satellite Imagery. The python scripts included allow user

1 Dec 16, 2022
The ctypes-based simple ImageMagick binding for Python

Wand Wand is a ctypes-based simple ImageMagick binding for Python, supporting 2.7, 3.3+, and PyPy. All functionalities of MagickWand API are implement

Eric McConville 1.2k Dec 30, 2022
Pixel Brush Processing Unit

Pixel Brush Processing Unit The Pixel Brush Processing Unit (PBPU for short) is a simple 4-Bit CPU I designed in Logisim while I was still in school a

Pixel Brush 2 Nov 03, 2022
An add to make adding screenshots and copied images to the scene easy

Blender Clipboard to Scene It doesn't work with version 2.93 and higher (I tested it on 2.91 and 2.83) There is an issue with importing the Pillow mod

Mohammad Mehdi Afkhami 3 Dec 29, 2021
Ascify-Art - An easy to use, GUI based and user-friendly colored ASCII art generator from images!

Ascify-Art This is a python based colored ASCII art generator for free! How to Install? You can download and use the python version if you want, modul

Akash Bora 14 Dec 31, 2022
kikuchipy is an open-source Python library for processing and analysis of electron backscatter diffraction (EBSD) patterns

kikuchipy is an open-source Python library for processing and analysis of electron backscatter diffraction (EBSD) patterns. The library builds on the

pyxem 53 Dec 29, 2022
Tool made for the FWA Yearbook Team to resize multiple images quickly.

ImageResize Tool Tool made for the FWA Yearbook Team to resize multiple images quickly. Make sure to check this repo for future updates How to Use The

LGobin 1 Jan 07, 2022
A GUI-based (PyQt5) tool used to design 2D linkage mechanism.

Pyslvs-UI A GUI-based (PyQt5) tool used to design 2D linkage mechanism. Planar Linkages Simulation Python-Solvespace: Kernel from Solvespace with Cyth

Yuan Chang 141 Dec 13, 2022
Javascript image annotation tool based on image segmentation.

JS Segment Annotator Javascript image annotation tool based on image segmentation. Label image regions with mouse. Written in vanilla Javascript, with

Kota Yamaguchi 513 Nov 15, 2022