EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

Overview

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

Paper: EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale submitted to IEEE Robotics and Automation Letters (RA-L) (ArXiv)

Jacek Komorowski, Monika Wysoczanska, Tomasz Trzcinski

Warsaw University of Technology

What's new

  • [2021-10-24] Evaluation code and pretrained models released.

Our other projects

  • MinkLoc3D: Point Cloud Based Large-Scale Place Recognition (WACV 2021): MinkLoc3D
  • MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition (IJCNN 2021): MinkLoc++
  • Large-Scale Topological Radar Localization Using Learned Descriptors (ICONIP 2021): RadarLoc

Introduction

The paper presents a deep neural network-based method for global and local descriptors extraction from a point cloud acquired by a rotating 3D LiDAR sensor. The descriptors can be used for two-stage 6DoF relocalization. First, a course position is retrieved by finding candidates with the closest global descriptor in the database of geo-tagged point clouds. Then, 6DoF pose between a query point cloud and a database point cloud is estimated by matching local descriptors and using a robust estimator such as RANSAC. Our method has a simple, fully convolutional architecture and uses a sparse voxelized representation of the input point cloud. It can efficiently extract a global descriptor and a set of keypoints with their local descriptors from large point clouds with tens of thousand points.

Citation

If you find this work useful, please consider citing:

Environment and Dependencies

Code was tested using Python 3.8 with PyTorch 1.9.1 and MinkowskiEngine 0.5.4 on Ubuntu 20.04 with CUDA 10.2. Note: CUDA 11.1 is not recommended as there are some issues with MinkowskiEngine 0.5.4 on CUDA 11.1.

The following Python packages are required:

  • PyTorch (version 1.9.1)
  • MinkowskiEngine (version 0.5.4)
  • pytorch_metric_learning (version 0.9.99 or above)
  • wandb

Modify the PYTHONPATH environment variable to include absolute path to the project root folder:

export PYTHONPATH=$PYTHONPATH:/home/.../Egonn

Datasets

EgoNN is trained and evaluated using the following datasets:

  • MulRan dataset: Sejong traversal is used. The traversal is split into training and evaluation part link
  • Apollo-SouthBay dataset: SunnyvaleBigLoop trajectory is used for evaluation, other 5 trajectories (BaylandsToSeafood, ColumbiaPark, Highway237, MathildaAVE, SanJoseDowntown) are used for training link
  • Kitti dataset: Sequence 00 is used for evaluation link

First, you need to download datasets:

  • For MulRan dataset you need to download ground truth data (*.csv) and LiDAR point clouds (Ouster.zip) for traversals: Sejong01 and Sejong02 (link).
  • Download Apollo-SouthBay dataset using the download link on the dataset website (link).
  • Download Kitti odometry dataset (calibration files, ground truth poses, Velodyne laser data) (link).

After loading datasets you need to generate training pickles for the network training and evaluation pickles for model evaluation.

Training pickles generation

Generating training tuples is very time consuming, as ICP is used to refine the ground truth poses between each pair of neighbourhood point clouds.

cd datasets/mulran
python generate_training_tuples.py --dataset_root <mulran_dataset_root_path>

cd ../southbay
python generate_training_tuples.py --dataset_root <apollo_southbay_dataset_root_path>
Evaluation pickles generation
cd datasets/mulran
python generate_evaluation_sets.py --dataset_root <mulran_dataset_root_path>

cd ../southbay
python generate_evaluation_sets.py --dataset_root <apollo_southbay_dataset_root_path>

cd ../kitti
python generate_evaluation_sets.py --dataset_root <kitti_dataset_root_path>

Training (training code will be released after the paper acceptance)

First, download datasets and generate training and evaluation pickles as described above. Edit the configuration file config_egonn.txt. Set dataset_folder parameter to point to the dataset root folder. Modify batch_size_limit and secondary_batch_size_limit parameters depending on available GPU memory. Default limits requires at least 11GB of GPU RAM.

To train the EgoNN model, run:

cd training

python train.py --config ../config/config_egonn.txt --model_config ../models/egonn.txt 

Pre-trained Model

EgoNN model trained (on training splits of MulRan and Apollo-SouthBay datasets) is available in weights/model_egonn_20210916_1104.pth folder.

Evaluation

To evaluate a pretrained model run below commands. Ground truth poses between different traversals in all three datasets are slightly misaligned. To reproduce results from the paper, use --icp_refine option to refine ground truth poses using ICP.

cd eval

# To evaluate on test split of Mulran dataset
python evaluate.py --dataset_root <dataset_root_path> --dataset_type mulran --eval_set test_Sejong01_Sejong02.pickle --model_config ../models/egonn.txt --weights ../weights/model_egonn_20210916_1104.pth --icp_refine

# To evaluate on test split of Apollo-SouthBay dataset
python evaluate.py --dataset_root <dataset_root_path> --dataset_type southbay --eval_set test_SunnyvaleBigloop_1.0_5.pickle --model_config ../models/egonn.txt --weights ../weights/model_egonn_20210916_1104.pth --icp_refine

# To evaluate on test split of KITTI dataset
python evaluate.py --dataset_root <dataset_root_path> --dataset_type kitti --eval_set kitti_00_eval.pickle --model_config ../models/egonn.txt --weights ../weights/model_egonn_20210916_1104.pth --icp_refine

Results

EgoNN performance...

Visualizations

Visualizations of our keypoint detector results. On the left, we show 128 keypoints with the lowest saliency uncertainty (red dots). On the right, 128 keypoints with the highest uncertainty (yellow dots).

Successful registration of point cloud pairs from KITTI dataset gathered during revisiting the same place from different directions. On the left we show keypoint correspondences (RANSAC inliers) found during 6DoF pose estimation with RANSAC. On the right we show point clouds aligned using estimated poses.

License

Our code is released under the MIT License (see LICENSE file for details).

Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).

Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn

Marcella Astrid 11 Oct 07, 2022
SlotRefine: A Fast Non-Autoregressive Model forJoint Intent Detection and Slot Filling

SlotRefine: A Fast Non-Autoregressive Model for Joint Intent Detection and Slot Filling Reference Main paper to be cited (Di Wu et al., 2020) @article

Moore 34 Nov 03, 2022
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network

ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur

22 Nov 05, 2022
A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 09, 2023
Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN-v2 StackGAN-v1: Tensorflow implementation StackGAN-v1: Pytorch implementation Inception score evaluation Pytorch implementation for reproduci

Han Zhang 809 Dec 16, 2022
CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Official PyTorch implementation of the ICRA 2021 paper: Adversarial Differentiable Data Augmentation for Autonomous Systems.

Adversarial Differentiable Data Augmentation This repository provides the official PyTorch implementation of the ICRA 2021 paper: Adversarial Differen

Manli 3 Oct 15, 2022
FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack

FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack Case study of the FCA. The code can be find in FCA. Cas

IDRL 21 Dec 15, 2022
Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection, AAAI 2021.

Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection This repository is an official implementation of the AAAI 2021 paper Co-mi

MEGVII Research 20 Dec 07, 2022
This repo tries to recognize faces in the dataset you created

YÜZ TANIMA SİSTEMİ Bu repo oluşturacağınız yüz verisetlerini tanımaya çalışan ma

Mehdi KOŞACA 2 Dec 30, 2021
Roger Labbe 13k Dec 29, 2022
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
Pca-on-genotypes - Mini bioinformatics project - PCA on genotypes

Mini bioinformatics project: PCA on genotypes This repo contains the code from t

Maria Nattestad 8 Dec 04, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Transformer Quantization This repository contains the implementation and experiments for the paper presented in Yelysei Bondarenko1, Markus Nagel1, Ti

83 Dec 30, 2022
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022
A Protein-RNA Interface Predictor Based on Semantics of Sequences

PRIP PRIP:A Protein-RNA Interface Predictor Based on Semantics of Sequences installation gensim==3.8.3 matplotlib==3.1.3 xgboost==1.3.3 prettytable==2

李优 0 Mar 25, 2022