PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

Related tags

Deep Learningpastrie
Overview

PASTRIE

CC BY-SA 4.0

Official release of the corpus described in the paper:

Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schneider (2020). PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English [link]. Proceedings of the 14th Linguistic Annotation Workshop.


Overview

PASTRIE is a corpus of English data from Reddit annotated with preposition supersenses from the SNACS inventory.

While the data in PASTRIE is in English, it was produced by presumed speakers of four L1s:

  • English
  • French
  • German
  • Spanish

For details on how L1s were identified, see section 3.1 of Rabinovich et al. (2018).

Annotation Example

Below is an example sentence from the corpus, where annotation targets are bolded and preposition supersenses are annotated with the notation SceneRole↝Function. Together, a scene role and function are known as a construal.


Data Formats

PASTRIE is released in the following formats. We expect that most projects will be best served by one of the JSON formats.

  • .conllulex: the 19-column CoNLL-U-Lex format originally used for STREUSLE.
  • .json: a JSON representation of the CoNLL-U-Lex that does not require a CoNLL-U-Lex parser.
  • .govobj.json: an extended version of the JSON representation that contains information about each preposition's syntactic parent and object.

PASTRIE mostly follows STREUSLE with respect to the data format and SNACS annotation practice. Primary differences in the annotations are:

  • Lemmas, part-of-speech tags, and syntactic dependencies aim to follow the UD standard in both cases. They are gold in STREUSLE, versus automatic with some manual corrections in PASTRIE.
    • PASTRIE does not group together base+clitic combinations, whereas STREUSLE does (multiword tokens—where a single orthographic word contains multiple syntactic words).
    • PASTRIE does not regularly specify SpaceAfter=No to indicate alignment between the tokens and the raw text.
    • In PASTRIE, the raw text string accompanying the sentence may contain two or more consecutive spaces.
    • PASTRIE lacks enhanced dependencies.
  • Multiword expression annotations in PASTRIE are limited to expressions containing a preposition. Depending on the syntactic head, the expression may or may not have a SNACS supersense.
    • Verbal multiword expressions in PASTRIE are not subtyped in the lexcat; they all have a lexcat of V.
  • Noun and verb expressions in PASTRIE do not have supersense labels.
Comments
  • Misc. annotation errors and/or conversion script bugs

    Misc. annotation errors and/or conversion script bugs

    There are some annotations which I'm fairly sure are incorrect and are choking up the JSON conversion script. (These errors occur using the unmodified versions of all scripts taken straight from STRUESLE.) One or two might also be indicative of a bug in the conllulex2json.py file.

    1. vs mistagged as a noun--should be prep

    AssertionError: ('french-fad32caf-e595-e3cb-07bf-aaea891e53cb-02', {'lexlemma': 'versus', 'lexcat': 'CCONJ', 'ss': 'c', 'ss2': 'c', 'toknums': [3]}, {'#': 3, 'word': 'vs', 'lemma': 'versus', 'upos': 'NOUN', 'xpos': 'NN', 'feats': None, 'head': 8, 'deprel': 'nsubj', 'edeps': None, 'misc': None, 'smwe': None, 'wmwe': None, 'lextag': 'O-CCONJ-`c'})

    1. ditto

    AssertionError: ('french-fad32caf-e595-e3cb-07bf-aaea891e53cb-02', {'lexlemma': 'versus', 'lexcat': 'CCONJ', 'ss': 'c', 'ss2': 'c', 'toknums': [3]}, {'#': 3, 'word': 'vs', 'lemma': 'versus', 'upos': 'NOUN', 'xpos': 'NN', 'feats': None, 'head': 8, 'deprel': 'nsubj', 'edeps': None, 'misc': None, 'smwe': None, 'wmwe': None, 'lextag': 'O-CCONJ-`c'})

    1. Script complains about "to" in this snippet at ID=23. Not immediately clear to me what the issue is--perhaps that "to" is labeled ADP/IN? For its xpos I think it ought to be TO, not sure about its upos. Snippet:
    13      shit    shit    NOUN    NN      _       16      obl:npmod       _       _       _       _       _       _       _       _       _       _       _
    14      this    this    PRON    DT      _       16      nsubj   _       _       _       _       _       _       _       _       _       _       _
    15      can     can     AUX     MD      _       16      aux     _       _       _       _       _       _       _       _       _       _       _
    16      end     end     VERB    VB      _       4       parataxis       _       _       _       _       _       _       _       _       _       _       _
    17      right   right   ADV     RB      _       18      advmod  _       _       _       _       _       _       _       _       _       _       _
    18      now     now     ADV     RB      _       16      advmod  _       _       _       _       _       _       _       _       _       _       _
    19      if      if      SCONJ   IN      _       21      mark    _       _       _       _       _       _       _       _       _       _       _
    20      I       I       PRON    PRP     _       21      nsubj   _       _       _       _       _       _       _       _       _       _       _
    21      want    want    VERB    VBP     _       16      advcl   _       _       _       _       _       _       _       _       _       _       _
    22      it      it      PRON    PRP     _       21      obj     _       _       _       _       _       _       _       _       _       _       _
    23      to      to      ADP     IN      _       21      obl     _       _       _       _       _       `i      `i      _       _       _       _
    24      .       .       PUNCT   .       _       4       punct   _       _       _       _       _       _       _       _       _       _       _
    

    Error:

    AssertionError: ('french-a17a4340-f9c0-8fef-fa1b-1bf13879399b-02', {'lexlemma': 'to', 'lexcat': 'INF', 'ss': 'i', 'ss2': 'i', 'toknums': [23]}, {'#': 23, 'word': 'to', 'lemma': 'to', 'upos': 'ADP', 'xpos': 'IN', 'feats': None, 'head': 21, 'deprel': 'obl', 'edeps': None, 'misc': None, 'smwe': None, 'wmwe': None, 'lextag': 'O-INF-`i'})

    Relevant span of code:

                if validate_pos and upos!=lc and (upos,lc) not in {('NOUN','N'),('PROPN','N'),('VERB','V'),
                    ('ADP','P'),('ADV','P'),('SCONJ','P'),
                    ('ADP','DISC'),('ADV','DISC'),('SCONJ','DISC'),
                    ('PART','POSS')}:
                    # most often, the single-word lexcat should match its upos
                    # check a list of exceptions
                    mismatchOK = False
                    if xpos=='TO' and lc.startswith('INF'):
                        mismatchOK = True
                    elif (xpos=='TO')!=lc.startswith('INF'):
                        assert upos in ['SCONJ', "ADP"] and swe['lexlemma']=='for',(sent['sent_id'],swe,tok)
                        mismatchOK = True
    
    1. Originator as function:

    (in french-c02823ec-60bd-adce-7327-01337eb9d1c8-02) AssertionError: ('p.Originator should never be function', {'lexlemma': 'you', 'lexcat': 'PRON.POSS', 'ss': 'p.Originator', 'ss2': 'p.Originator', 'toknums': [1]})

    1. lexcat DISC with ADJ:

    AssertionError: In spanish-a25e8289-e04a-f5af-ce56-ead9faca65b1-02, single-word expression 'like' has lexcat DISC, which is incompatible with its upos ADJ

    1. "her" tagged with Possessor is incorrectly parsed as iobj and tagged as PRP instead of PRP$. Relevant snippet:
    1       My      my      PRON    PRP$    _       2       nmod:poss       _       _       _       _       _       SocialRel       Gestalt _       _       _       _
    2       grandma grandma NOUN    NN      _       3       nsubj   _       _       _       _       _       _       _       _       _       _       _
    3       had     have    VERB    VBD     _       0       root    _       _       _       _       _       _       _       _       _       _       _
    4       her     she     PRON    PRP     _       3       iobj    _       _       _       _       _       Possessor       Possessor       _       _       _       _
    5       super   super   ADV     RB      _       6       advmod  _       _       _       _       _       _       _       _       _       _       _
    6       thick   thick   ADJ     JJ      _       8       amod    _       _       _       _       _       _       _       _       _       _       _
    7       floor   floor   NOUN    NN      _       8       compound        _       _       _       _       _       _       _       _       _       _       _
    8       mats    mat     NOUN    NNS     _       3       obj     _       _       _       _       _       _       _       _       _       _       _
    9       *       *       PUNCT   NFP     _       8       punct   _       _       _       _       _       _       _       _       _       _       _
    10      over    over    ADP     IN      _       13      case    _       _       _       _       _       Locus   Locus   _       _       _       _
    11      *       *       PUNCT   NFP     _       13      punct   _       _       _       _       _       _       _       _       _       _       _
    12      the     the     DET     DT      _       13      det     _       _       _       _       _       _       _       _       _       _       _
    13      accelerator     accelerator     NOUN    NN      _       3       obl     _       _       _       _       _       _       _       _       _       _       _
    14      ,       ,       PUNCT   ,       _       3       punct   _       _       _       _       _       _       _       _       _       _       _
    

    Error:

    AssertionError: In spanish-ebba3c73-2431-c216-8f4d-d469ee8d5564-01, single-word expression 'her' has lexcat P, which is incompatible with its upos PRON

    1. "NA" is misannotated--this is NA as in North America, i.e. a PROPN/NP, but it's lemmatized as "no", and its tags are weird.

    AssertionError: ('german-35000895-1d78-c18a-01ed-f7410b9c0581-01', {'lexlemma': 'no', 'lexcat': 'ADV', 'ss': None, 'ss2': None, 'toknums': [5]}, {'#': 5, 'word': 'NA', 'lemma': 'no', 'upos': 'PART', 'xpos': 'TO', 'feats': None, 'head': 6, 'deprel': 'mark', 'edeps': None, 'misc': None, 'smwe': None, 'wmwe': None, 'lextag': 'O-ADV'})

    opened by lgessler 6
  • Prepositional supersense annotations on non-preposition targets

    Prepositional supersense annotations on non-preposition targets

    Is it OK for a verb-headed SMWE to have a prepositional supersense? The validator complains about it. Offending SMWE:

    21	give	give	VERB	VB	_	10	conj	_	_	2:1	_	give up on	p.Theme	p.Theme	_	_	_	_
    22	up	up	ADP	RP	_	21	compound:prt	_	_	2:2	_	_	_	_	_	_	_	_
    23	on	on	ADP	IN	_	24	case	_	_	2:3	_	_	_	_	_	_	_	_
    
    opened by lgessler 5
  • Prepositions unannotated for supersense

    Prepositions unannotated for supersense

    Token 6:

    # sent_id = french-f57dd6ab-5263-4c8a-e360-8ec683e6a37a-02
    # text = Once you have the hang of it it s pretty fast ( and does n't eat your clutch ) .
    1	Once	once	SCONJ	IN	_	3	mark	_	_	_	_	_	_	_	_	_	_	_
    2	you	you	PRON	PRP	_	3	nsubj	_	_	_	_	_	_	_	_	_	_	_
    3	have	have	VERB	VBP	_	11	advcl	_	_	_	_	_	_	_	_	_	_	_
    4	the	the	DET	DT	_	5	det	_	_	_	_	_	_	_	_	_	_	_
    5	hang	hang	NOUN	NN	_	3	obj	_	_	_	_	_	_	_	_	_	_	_
    6	of	of	ADP	IN	_	7	case	_	_	_	_	_	_	_	_	_	_	_
    7	it	it	PRON	PRP	_	5	nmod	_	_	_	_	_	_	_	_	_	_	_
    8	it	it	PRON	PRP	_	11	nsubj	_	_	_	_	_	_	_	_	_	_	_
    9	s	be	AUX	VBZ	_	11	cop	_	_	_	_	_	_	_	_	_	_	_
    10	pretty	pretty	ADV	RB	_	11	advmod	_	_	_	_	_	_	_	_	_	_	_
    11	fast	fast	ADJ	JJ	_	0	root	_	_	_	_	_	_	_	_	_	_	_
    12	(	(	PUNCT	-LRB-	_	16	punct	_	_	_	_	_	_	_	_	_	_	_
    13	and	and	CCONJ	CC	_	16	cc	_	_	_	_	_	_	_	_	_	_	_
    14	does	do	AUX	VBZ	_	16	aux	_	_	_	_	_	_	_	_	_	_	_
    15	n't	not	PART	RB	_	16	advmod	_	_	_	_	_	_	_	_	_	_	_
    16	eat	eat	VERB	VB	_	11	conj	_	_	_	_	_	_	_	_	_	_	_
    17	your	you	PRON	PRP$	_	18	nmod:poss	_	_	_	_	_	Possessor	Possessor	_	_	_	_
    18	clutch	clutch	NOUN	NN	_	16	obj	_	_	_	_	_	_	_	_	_	_	_
    19	)	)	PUNCT	-RRB-	_	11	punct	_	_	_	_	_	_	_	_	_	_	_
    20	.	.	PUNCT	.	_	11	punct	_	_	_	_	_	_	_	_	_	_	_
    

    I assumed that all preps were supposed to be annotated, but perhaps not?

    opened by lgessler 3
  • Apostrophes removed in preprocessing?

    Apostrophes removed in preprocessing?

    Looking through the data, there are a LOT of sentences where clitics are tokenized off but lack an apostrophe. Is that just the genre or did they get lost in preprocessing?

    opened by nschneid 2
  • Dataset requested

    Dataset requested

    Hi all,

    I would like to request the PASTRIE dataset accompanying the paper "PASTRIE: A Corpus of Prepositions Annotated with Supsersense Tags in Reddit International English".

    Thanks for reply.

    opened by fj-morales 2
  • SNACS supersense tags should start with

    SNACS supersense tags should start with "p."

    For compatibility with STREUSLE, it should be p.Locus, p.Theme, etc.

    Special labels like `i `d `c `$ ?? should not start with p.. In fact, the backtick labels from annotation are not represented as such in STREUSLE—they are reflected in the LEXCAT column of the data.

    opened by nschneid 0
  • Questionable adpositional MWEs

    Questionable adpositional MWEs

    • in_male_term — from "in male terms"; should be in_term (at most)
    • in_the_first_place
    • in_my_hand — from "in my hands"; should be in_hand (at most)
    • for_quite_some_time — just Duration for, weak MWE?
    • at_all_time — from what should have been "at all times". OK?
    • on_a_smaller_scale — omit adjective?
    • withouth — typo
    • see_as — "seeing as" (deverbal MWE acting like a preposition)
    opened by nschneid 0
  • Some undersegmentation of sentences

    Some undersegmentation of sentences

    Despite manual editing there are still places where a long sentence ought to be split up (esp. where it consists of a blockquoted sentence with > followed by a response). Looking for multiple consecutive spaces in the raw text uncovers some of these (as well as some discourse appendages like emoticons, which should probably remain in the same UD sentence).

    It would be nice to write a script to help clean these up—the tricky part is updating offsets in each parse.

    opened by nschneid 0
Releases(v2.0.1)
  • v2.0.1(Nov 21, 2021)

  • v2.0(Oct 22, 2021)

    • Switch to full .conllulex format following STREUSLE
      • add lexcats (#3), morphological features, newdoc directives
    • Scripts for validation and format conversion
    • Clean up various annotation issues, including:
      • restore apostrophes and fixing other conversion problems (#6, #9)
      • include pretokenized raw text (#12)
    Source code(tar.gz)
    Source code(zip)
  • v1.0.1(Dec 14, 2020)

    • Added .json file format
    • Switched lemmatization and pos tagging from StanfordNLP 0.2.0 to Stanza 1.1.1
    • Corrected rare encoding issue from v1.0
    Source code(tar.gz)
    Source code(zip)
Owner
NERT @ Georgetown
NERT @ Georgetown
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
Official repository for the CVPR 2021 paper "Learning Feature Aggregation for Deep 3D Morphable Models"

Deep3DMM Official repository for the CVPR 2021 paper Learning Feature Aggregation for Deep 3D Morphable Models. Requirements This code is tested on Py

38 Dec 27, 2022
Source code for Acorn, the precision farming rover by Twisted Fields

Acorn precision farming rover This is the software repository for Acorn, the precision farming rover by Twisted Fields. For more information see twist

Twisted Fields 198 Jan 02, 2023
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Bayesian inference for Permuton-induced Chinese Restaurant Process (NeurIPS2021).

Permuton-induced Chinese Restaurant Process Note: Currently only the Matlab version is available, but a Python version will be available soon! This is

NTT Communication Science Laboratories 3 Dec 17, 2022
Direct application of DALLE-2 to video synthesis, using factored space-time Unet and Transformers

DALLE2 Video (wip) ** only to be built after DALLE2 image is done and replicated, and the importance of the prior network is validated ** Direct appli

Phil Wang 105 May 15, 2022
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
This code provides various models combining dilated convolutions with residual networks

Overview This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less

Fisher Yu 1.1k Dec 30, 2022
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
Hyper-parameter optimization for sklearn

hyperopt-sklearn Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn. See how to use hyperopt-sklearn

1.4k Jan 01, 2023
PyTorch for Semantic Segmentation

PyTorch for Semantic Segmentation This repository contains some models for semantic segmentation and the pipeline of training and testing models, impl

Zijun Deng 1.7k Jan 06, 2023
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr

HUAWEI Noah's Ark Lab 3k Jan 08, 2023
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.

C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedal

Meta Research 309 Dec 16, 2022